AI Article Synopsis

  • - Macrothrompocytopenia (MTP) is a rare hereditary disorder caused by genetic mutations that affect blood clotting, primarily due to dysfunction in megakaryocytes, which are crucial for platelet production
  • - The DIAPH1 gene plays a significant role in this disorder, with variants leading to macrothrombocytopenia and associated conditions like sensorineural deafness; different mutations result in varying symptoms including seizures and microcephaly in more severe cases
  • - A case study of a 14-year-old Saudi girl highlighted a novel mutation (c.3633_3636del) in the DIAPH1 gene, suggesting its potential link to both MTP and autosomal dominant non-syndromic

Article Abstract

Macrothrompocytopenia (MTP) is a rare group of hereditary disorders that lead to impaired hemostasis. Macrothrompocytopenia mostly results from genetic mutations in genes implicated in megakaryocyte differentiation and function. Diaphanous-related formin 1 (DIAPH1) is a protein-coding gene. Dominant gain-of-function DIAPH1 variants cause macrothrombocytopenia and sensorineural deafness (autosomal dominant non-syndromic hearing loss 1 (DFNA1)), while homozygous loss of DIAPH1 results in seizures, cortical blindness, and microcephaly syndrome (SCBMS). This rare genetic disease is characterized by progressive and severe hearing loss with onset in the first decade of life, is associated with mild thrombocytopenia, and has no significant bleeding tendency. This case report presents the clinical findings of a 14-year-old Saudi pediatric girl. We investigated the potential association of DIAPH1 as a novel candidate gene linked to dominant MTP and autosomal dominant non-syndromic hearing loss (ADNSHL), which was evaluated through audiometry. Notably, a novel variant, c.3633_3636del, was identified in the DIAPH1 gene. To date, only a small number of mutations in this gene have been reported as the cause of MTP and ADNSHL.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11195521PMC
http://dx.doi.org/10.7759/cureus.61044DOI Listing

Publication Analysis

Top Keywords

hearing loss
16
non-syndromic hearing
12
novel variant
8
diaph1 gene
8
autosomal dominant
8
dominant non-syndromic
8
diaph1
6
gene
5
loss
5
variant diaph1
4

Similar Publications

Aims And Objectives: This study aimed to investigate the presence, type, and severity of hearing losses in individuals with Duane Retraction Syndrome (DRS), and to ascertain if there are anomalies in the auditory pathways at the brainstem level in DRS, believed to arise from aberrant interaction between cranial nerves and brainstem nuclei.

Study Design: Cross-sectional observational study.

Setting: Tertiary referral centre.

View Article and Find Full Text PDF

A fifth world case of autosomal recessive Siddiqi syndrome (SIDDIS) related to ene is presented. In a consanguineous Lezgin (a Dagestan ethnicity) family, there were two affected brothers aged 28 yrs (proband, personally examined) and 32 yrs. Whole-exome sequencing followed by familial Sanger sequencing detected a novel missence variant c.

View Article and Find Full Text PDF

According to the literature, a number of anti-epileptic drugs (AEDs) have an ototoxic effect. The mechanism of hearing dysfunction due to the use of AEDs is not well known. The main clinical manifestations of the cochleotoxic effect of the drugs are: tinnitus, sensorineural hearing loss, impaired pitch perception, hyperacusis.

View Article and Find Full Text PDF

Background: Pompe disease is a glycogen storage disease primarily affecting striated muscles. Despite its main manifestation in muscles, patients with Pompe disease may exhibit non-muscle symptoms, such as hearing loss, suggesting potential involvement of sensory organs or the nervous system due to glycogen accumulation.

Aims: This study aimed to evaluate the presence of concomitant small and large fiber neuropathy in patients with Pompe disease.

View Article and Find Full Text PDF

Hearing loss (HL) in mid-life has been suggested as a risk factor for cognitive decline. It is unclear whether this relationship is due to deprivation of auditory input alone, degenerative processes, or a combination. Animal models are useful to investigate underlying neural mechanisms as human studies can be confounded by various factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!