The Astrocytic Calcium Signaling Toolkit (astroCaST) is a novel solution to a longstanding challenge in neuroscience research: the specialized analysis of astrocytic calcium events within fluorescence time-series imaging. Distinct from existing neuron-centric tools, astroCaST is adept at detecting and clustering astrocytic calcium events based on their unique spatiotemporal characteristics, thus filling a gap in astrocytic research methodologies. This toolkit not only facilitates the detection of such events but also extends its utility to provide comprehensive end-to-end analysis. This feature is absent in most tools targeting astrocytic activity. AstroCaST's development was motivated by the critical need for dedicated software that supports researchers in transitioning from raw video data to insightful experimental conclusions, efficiently managing large-scale datasets without compromising computational speed. It offers a user-friendly interface that caters to both novice and expert users, incorporating both a graphical user interface (GUI) for detailed explorations and a command-line interface (CLI) for extensive analyses. Expected outcomes from utilizing astroCaST include the ability to process and analyze a significantly larger volume of data. This enables a more profound and comprehensive analysis than previously possible, addressing the demands of large-scale astrocytic studies. In summary, astroCaST aims to advance astrocytic calcium imaging analysis, offering a tailored, efficient, and comprehensive toolset that enhances our understanding of astrocytic functions and their implications in neuroscience.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11195029 | PMC |
http://dx.doi.org/10.3389/fncel.2024.1408607 | DOI Listing |
F1000Res
January 2025
Faculty of Teaching and Education Sciences, Islamic University of Malang, Malang, East Java, Indonesia.
Background: Neurodegeneration due to neurotoxicity is one of the phenomena in temporal lobe epilepsy. Experimentally, hippocampal excitotoxicity process can occur due to kainic acid exposure, especially in the CA3 area. Neuronal death, astrocyte reactivity and increased calcium also occur in hippocampal excitotoxicity, but few studies have investigated immediate effect after kainic acid exposure.
View Article and Find Full Text PDFKorean J Physiol Pharmacol
January 2025
Department of Pharmacology, Catholic Kwandong University College of Medicine, Gangneung 25601, Korea.
Neurosteroids play an important role as endogenous neuromodulators that are locally produced in the central nervous system and rapidly change the excitability of neurons and the activation of microglial cells and astrocytes. Here we review the mechanisms of synthesis, metabolism, and actions of neurosteroids in the central nervous system. Neurosteroids are able to play a variety of roles in the central nervous system under physiological conditions by binding to membrane ion channels and receptors such as gamma-aminobutyric acid type A receptors, Nmethyl- D-aspartate receptors, L- and T-type calcium channels, and sigma-1 receptors.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, 266003/572024, China.
The scarcity of effective neuroprotective agents and the presence of blood-brain barrier (BBB)-mediated extremely inefficient intracerebral drug delivery are predominant obstacles to the treatment of cerebral ischemic stroke (CIS). Herein, ROS-responsive borneol-based amphiphilic polymeric NPs are constructed by using traditional Chinese medicine borneol as functional blocks that served as surface brain-targeting ligand, inner hydrophobic core for efficient drug loading of membrane-permeable calcium chelator BAPTA-AM, and neuroprotective structural component. In MCAO mice, the nanoformulation (polymer: 3.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Université Grenoble Alpes, CNRS, LIPhy, Grenoble, France.
Staining brain slices with acetoxymethyl ester (AM) Ca dyes is a straightforward procedure to load multiple cells, and Fluo-4 is a commonly used high-affinity indicator due to its very large dynamic range. It has been shown that this dye preferentially stains glial cells, providing slow and large Ca transients, but it is questionable whether and at which temporal resolution it can also report Ca transients from neuronal cells. Here, by electrically stimulating mouse hippocampal slices, we resolved fast neuronal signals corresponding to 1%-3% maximal fluorescence changes.
View Article and Find Full Text PDFBehav Neurol
January 2025
Laboratory of Neurobiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
Astrocytes are the primary cell type in the central nervous system, responsible for maintaining the stability of the brain's internal environment and supporting neuronal functions. Researches have demonstrated the close relationship between astrocytes and the pathophysiology and etiology of major depressive disorder. However, the regulatory mechanisms of astrocytes during depression remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!