Broken time reversal symmetry in visual motion detection.

bioRxiv

Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA.

Published: June 2024

Our intuition suggests that when a movie is played in reverse, our perception of motion in the reversed movie will be perfectly inverted compared to the original. This intuition is also reflected in many classical theoretical and practical models of motion detection. However, here we demonstrate that this symmetry of motion perception upon time reversal is often broken in real visual systems. In this work, we designed a set of visual stimuli to investigate how stimulus symmetries affect time reversal symmetry breaking in the fruit fly 's well-studied optomotor rotation behavior. We discovered a suite of new stimuli with a wide variety of different properties that can lead to broken time reversal symmetries in fly behavioral responses. We then trained neural network models to predict the velocity of scenes with both natural and artificial contrast distributions. Training with naturalistic contrast distributions yielded models that break time reversal symmetry, even when the training data was time reversal symmetric. We show analytically and numerically that the breaking of time reversal symmetry in the model responses can arise from contrast asymmetry in the training data, but can also arise from other features of the contrast distribution. Furthermore, shallower neural network models can exhibit stronger symmetry breaking than deeper ones, suggesting that less flexible neural networks promote some forms of time reversal symmetry breaking. Overall, these results reveal a surprising feature of biological motion detectors and suggest that it could arise from constrained optimization in natural environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11195140PMC
http://dx.doi.org/10.1101/2024.06.08.598068DOI Listing

Publication Analysis

Top Keywords

time reversal
32
reversal symmetry
20
symmetry breaking
12
broken time
8
reversal
8
motion detection
8
neural network
8
network models
8
contrast distributions
8
training data
8

Similar Publications

Background: Canine adipose-derived mesenchymal stem cells (cAD-MSCs) demonstrate promising tissue repair and regeneration capabilities. However, the procurement and preservation of these cells or their secreted factors for therapeutic applications pose a risk of viral contamination, and the consequences for cAD-MSCs remain unexplored. Consequently, this research sought to assess the impact of canid alphaherpesvirus 1 (CHV) on the functional attributes of cAD-MSCs, including gene expression profiles and secretome composition.

View Article and Find Full Text PDF

Development of a molecular assay for the determination of Eimeria tenella oocyst viability.

Parasitol Res

December 2024

Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.

Coccidiosis is caused by apicomplexan parasites of the genus Eimeria, which infect epithelial cells of the intestinal tract causing diarrhea and negatively impacting production in the poultry industry. The self-limiting and highly immunogenic nature of infection by Eimeria spp. make live vaccination an effective means of coccidiosis control.

View Article and Find Full Text PDF

Similar pipeline experiment and disaster control emergency plan of updraft airflow fire in mine.

Sci Rep

December 2024

College of Safety Science and Engineering, Liaoning Technical University, 47 Zhonghua Road, Xihe District, Fuxin City, 123000, Liaoning Province, China.

Based on the engineering example of Linsheng coal mine, this paper uses TF1M3D computer simulation platform to systematically analyze the process of smoke flow spreading and air flow disorder disaster from the perspective of the whole mine network, and puts forward corresponding plans and measures. A small scale similar experiment was carried out to study the updraft flow fire in the mine. Through the analysis of the collected experimental data, the variation law of the air volume of the fire source in the main air path, side branch road and total air path with different air volume and the variation characteristics of the temperature at the monitoring point with time were obtained under different air volume conditions, and the critical air volume was fitted as 1.

View Article and Find Full Text PDF

Complexity measure in natural time analysis identifying the accumulation of stresses before major earthquakes.

Sci Rep

December 2024

Institute of Oceanic Research and Development, Tokai University, 3-20-1, Orido, Shimizu-ku, Shizuoka, 424-0902, Japan.

Here, we suggest a procedure through which one can identify when the accumulation of stresses before major earthquakes (EQs) (of magnitude M 8.2 or larger) occurs. Analyzing the seismicity in natural time, which is a new concept of time, we study the evolution of the fluctuations of the entropy change of seismicity under time reversal for various scales of different length i (number of events).

View Article and Find Full Text PDF

Background: COVID-19, caused by the SARS-CoV-2 virus, presents with varying severity among individuals. Both viral and host factors can influence the severity of acute and chronic COVID-19, with chronic COVID-19 commonly referred to as long COVID. SARS-CoV-2 infection can be properly diagnosed by performing real-time reverse transcription PCR analysis of nasal swab samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!