Microbes must adapt to diverse biotic and abiotic factors encountered in host environments. Polyamines are an abundant class of aliphatic molecules that play essential roles in fundamental cellular processes across the tree of life. Surprisingly, the bacterial pathogen is highly sensitive to polyamines encountered during infection, and acquisition of a polyamine resistance locus has been implicated in spread of the prominent USA300 methicillin-resistant lineage. At present, alternative pathways of polyamine resistance in staphylococci are largely unknown. Here we applied experimental evolution to identify novel mechanisms and consequences of adaption when exposed to increasing concentrations of the polyamine spermine. Evolved populations of exhibited striking evidence of parallel adaptation, accumulating independent mutations in the potassium transporter genes and . Mutations in either or are sufficient to confer polyamine resistance and function in an additive manner. Moreover, we find that ktr mutations provide increased resistance to multiple classes of unrelated cationic antibiotics, suggesting a common mechanism of resistance. Consistent with this hypothesis, ktr mutants exhibit alterations in cell surface charge indicative of reduced affinity and uptake of cationic molecules. Finally, we observe that laboratory-evolved ktr mutations are also present in diverse natural isolates, suggesting these mutations may contribute to antimicrobial resistance during human infections. Collectively this study identifies a new role for potassium transport in polyamine resistance with consequences for susceptibility to both host-derived and clinically-used antimicrobials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11195161PMC
http://dx.doi.org/10.1101/2024.06.15.599172DOI Listing

Publication Analysis

Top Keywords

polyamine resistance
20
resistance
8
potassium transport
8
ktr mutations
8
polyamine
5
mutations
5
evolution polyamine
4
resistance modulation
4
modulation potassium
4
transport microbes
4

Similar Publications

Enterococcus faecalis is a multi-drug-resistant human pathogen that is found in a variety of environments and is challenging to treat. Under stress conditions, some bacteria regulate intracellular polyamine concentrations via polyamine acetyltransferases to reduce their toxicity. The E.

View Article and Find Full Text PDF

Creeping bentgrass (Agrostis stolonifera) is a cool-season perennial turfgrass and is frequently utilized in high-quality turf areas. However, a poor to moderate resistance to heat stress limits its promotion and utilization in transitional and worm climate zones. The objectives of the study were to assess the heat tolerance of 18 creeping bentgrass genotypes in the field and to further uncover differential mechanisms of heat tolerance between heat-tolerant and heat-sensitive genotypes.

View Article and Find Full Text PDF

Supramolecular transparent plastic engineering covalent-and-supramolecular polymerization.

Mater Horiz

January 2025

College of Chemistry and Chemical Engineering, Hunan University, Hunan 410082, P. R. China.

Supramolecular glass and plastic are a new generation of artificial transparent materials that exhibit excellent optical behavior and processability. However, owing to inherent deficiencies in their mechanical toughness and long-term stability, supramolecular materials lack the potential for functionalization and application. Inspired by the toughening phenomena in biological systems, a synergistic covalent-and-supramolecular polymerization strategy was applied to construct plastic-like supramolecular materials with high transmittance the solvent-free one-pot amidation of thioctic acid and (poly)amines.

View Article and Find Full Text PDF

exhibits high tolerance to arsenic; however, the mechanisms underlying its response to the arsenic stress have not been fully elucidated. This study investigated the growth and resistance mechanisms of under As stress by measuring physiological and biochemical indices, conducting transcriptome sequencing, and validating the results through qPCR. The findings show that arsenic stress affected the antioxidant system and photosynthetic pigment synthesis in .

View Article and Find Full Text PDF

Overcoming resistance to arginine deprivation therapy using GC7 in pleural mesothelioma.

iScience

January 2025

Centre for Cancer Cell & Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.

Pleural mesothelioma is a highly chemotherapy-resistant cancer. Approximately 50% of mesotheliomas do not express argininosuccinate synthetase 1 (ASS1), the rate-limiting enzyme in arginine biosynthesis, making arginine depletion with pegylated arginine deiminase (ADI-PEG20) an attractive therapeutic strategy. We investigated whether combinatory treatment composed of ADI-PEG20 and polyamine inhibitors constitutes a promising novel therapeutic strategy to overcome ADI-PEG20 resistance in mesothelioma patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!