Accurate and timely diagnosis of oral squamous cell carcinoma (OSCC) is crucial in preventing its progression to advanced stages with a poor prognosis. As such, the construction of sensors capable of detecting previously established disease biomarkers for the early and non-invasive diagnosis of this and many other conditions has enormous therapeutic potential. In this work, we apply synthetic biology techniques for the development of a whole-cell biosensor (WCB) that leverages the physiology of engineered bacteria to promote the expression of an observable effector upon detection of a soluble molecule. To this end, we have constructed a bacterial strain expressing a novel chimeric transcription factor (Sphnx) for the detection of N-acetylneuraminic acid (Neu5Ac), a salivary biomolecule correlated with the onset of OSCC. This WCB serves as the proof-of-concept of a platform that can eventually be applied to clinical screening panels for a multitude of oral and systemic medical conditions whose biomarkers are present in saliva.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11195194PMC
http://dx.doi.org/10.1101/2024.06.13.598939DOI Listing

Publication Analysis

Top Keywords

expanding salivary
4
salivary biomarker
4
biomarker detection
4
detection creating
4
creating synthetic
4
synthetic neuraminic
4
neuraminic acid
4
acid sensor
4
sensor chimeragenesis
4
chimeragenesis accurate
4

Similar Publications

The oral cavity is a critical barrier with immunosurveillance capabilities. A detailed understanding of its cellular, molecular, and spatial architecture is essential for advancing precision medicine across aerodigestive tissues. Here, we present the first integrated atlas of human adult oral and craniofacial tissues, derived from single-cell RNA sequencing of ~250,000 cells from 70 samples across 13 niches, including salivary glands and oral mucosae.

View Article and Find Full Text PDF

In the era of targeted therapies, the clinical importance and utility of next-generation sequencing (NGS) has expanded significantly. Owing to the relative ease and financial feasibility of NGS, the use of personalized treatment strategies has the potential to revolutionize cancer care. In this case report, we explored the use of NGS in salivary gland carcinoma (SGC) and spindle cell neoplasm of the scalp.

View Article and Find Full Text PDF

Therapeutic potential of interleukin-17 neutralization in a novel humanized mouse model of Sjögren's disease.

Pharmacol Res

December 2024

School of Chinese Medicine, the University of Hong Kong, Hong Kong; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong. Electronic address:

Sjögren's disease (SjD) is a chronic autoimmune disease, in which the immune system targets exocrine glands and leads to dryness symptoms. There is an increasing need to develop novel therapeutic approach as the treatment plan has not been changed in the past decade. However, findings in mouse model may not be directly applied in patients, given the substantial differences of immune system between human and mice.

View Article and Find Full Text PDF

Saliva has emerged as a promising diagnostic fluid for viral infections, enabling the direct analysis of viral genetic material and the detection of infection markers such as proteins, metabolites, microRNAs, and immunoglobulins. This comprehensive review aimed to explore the use of saliva as a diagnostic tool for viral infections, emphasizing its advantages and limitations. Saliva stands out due to its simplicity and safety in collection, along with the convenience of self-collection without the need for healthcare supervision, while potentially being comparable to urine and blood in terms of effectiveness.

View Article and Find Full Text PDF

Fibromyxoid aSoft Tissue Tumor With PLAG1 Fusion-The First Case in an Adult Patient.

Genes Chromosomes Cancer

November 2024

Department of Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic.

With the expanding possibilities of human genome research in recent years, the number of cases of soft tissue tumors that we are able to classify into the correct subgroups and to reveal their molecular profile is increasing. Among such tumors, we can also consider neoplasms that have a specific fusion of genes, in our case namely the pleomorphic adenoma gene 1 (PLAG1) and its partner. PLAG1 gene fusions were previously associated mainly with salivary gland pleomorphic adenomas, lipoblastomas, myoepithelial tumors, uterine epitheloid, myxoid leiomyosarcomas, and, recently, with PLAG1-rearranged fibromyxoid soft tissue tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!