AI Article Synopsis

  • * The study focused on SERF, a small, positively charged IDR-containing protein, demonstrating that high concentrations of SERF and RNA lead to phase separation, creating a dense mixture of both molecules.
  • * Analysis revealed that, while SERF and RNA do not gain structure upon binding, SERF shows slight global compaction when interacting with RNA, suggesting that reduced charge repulsion facilitates the formation of higher-order assemblies in the context of RNA interactions.

Article Abstract

Intrinsically disordered protein regions (IDRs) are well-established as contributors to intermolecular interactions and the formation of biomolecular condensates. In particular, RNA-binding proteins (RBPs) often harbor IDRs in addition to folded RNA-binding domains that contribute to RBP function. To understand the dynamic interactions of an IDR-RNA complex, we characterized the RNA-binding features of a small (68 residues), positively charged IDR-containing protein, SERF. At high concentrations, SERF and RNA undergo charge-driven associative phase separation to form a protein- and RNA-rich dense phase. A key advantage of this model system is that this threshold for demixing is sufficiently high that we could use solution-state biophysical methods to interrogate the stoichiometric complexes of SERF with RNA in the one-phase regime. Herein, we describe our comprehensive characterization of SERF alone and in complex with a small fragment of the HIV-1 TAR RNA (TAR) with complementary biophysical methods and molecular simulations. We find that this binding event is not accompanied by the acquisition of structure by either molecule; however, we see evidence for a modest global compaction of the SERF ensemble when bound to RNA. This behavior likely reflects attenuated charge repulsion within SERF via binding to the polyanionic RNA and provides a rationale for the higher-order assembly of SERF in the context of RNA. We envision that the SERF-RNA system will lower the barrier to accessing the details that support IDR-RNA interactions and likewise deepen our understanding of the role of IDR-RNA contacts in complex formation and liquid-liquid phase separation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11195163PMC
http://dx.doi.org/10.1101/2024.06.12.598678DOI Listing

Publication Analysis

Top Keywords

disordered protein
8
serf rna
8
phase separation
8
biophysical methods
8
rna
7
serf
7
molecular insights
4
insights interaction
4
interaction disordered
4
protein folded
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!