The enzymatic decarboxylation of α,β-unsaturated acids using the ferulic acid decarboxylase (Fdc1) enzyme and prenylated flavin mononucleotide (prFMN) cofactor is a potential, environmentally friendly reaction for the biosynthesis of styrene and its derivatives. However, experiments showed that the enzyme activity of Fdc1 depends on the ring structure of prFMN, namely, the iminium and ketimine forms, and the loss of enzyme activity results from prFMN → prFMN photoisomerization. To obtain insight into this photochemical process and to improve the enzyme efficiency of Fdc1, two proposed photoisomerization mechanisms with different proton sources for the acid-base reaction were studied herein using theoretical methods. The potential energy surfaces calculated using the density functional theory method with the Becke, 3-parameter, and Lee-Yang-Parr hybrid functionals and DZP basis set (DFT/B3LYP/DZP) and TD-DFT/B3LYP/DZP methods confirmed that the light-dependent reaction occurs in the rate-determining proton transfer process and that the mechanism involving intermolecular proton transfer between prFMN and Glu282 (external base) is energetically more favorable than that involving intramolecular proton transfer in prFMN (internal base). The thermodynamic results obtained from the transition state theory method suggested that the exothermic relaxation energy in the photo-to-thermal process can promote the spontaneous formation of a high-energy-barrier transition state, and an effective enzymatic decarboxylation could be achieved by slowing down the formation of the undesirable thermodynamically favorable product (prFMN). Because the rate constant for formation of the high-energy-barrier transition state varies exponentially over the temperature range of 273-298 K, and experimental results have shown that incubating Fdc1 on ice results in a complete loss of enzyme activity, it is recommended to perform the decarboxylation reaction at 285 K to strike a balance between minimizing enzyme stability loss at 273 K and mitigating the effects of UV irradiation. The computational strategy and fundamental insights obtained in this study could serve as guidelines for future theoretical and experimental investigations on the same and similar photochemical systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11194708 | PMC |
http://dx.doi.org/10.1039/d4ra02035a | DOI Listing |
Plant Physiol
January 2025
Institute of Biology, University of Graz, Graz, Austria.
Understanding the molecular mechanisms of abiotic stress responses in plants is instrumental for the development of climate-resilient crops. Key factors in abiotic stress responses, such as the proton- pumping pyrophosphatase (AVP1), have been identified, but their function and regulation remain elusive. Here, we explored the post-translational regulation of AVP1 by the ubiquitin-conjugating enzyme UBC34 and its relevance in the salt stress and phosphate starvation responses of Arabidopsis (Arabidopsis thaliana).
View Article and Find Full Text PDFBiomed Chromatogr
February 2025
School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China.
Previous studies have suggested that ginsenoside Rg glycine ester derivative (RG) exhibits therapeutic potential in mitigating hypoxia. This study aimed to elucidate the potential mechanism of RG in hypoxia injury through a combined approach of metabolomics and network pharmacology. Initially, a CoCl-induced cell hypoxia model was established, and the therapeutic impact of RG on biochemical indices was evaluated.
View Article and Find Full Text PDFJ Sci Food Agric
January 2025
Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thailand.
Background: Edible insects are used for consumption and traditional medicine due to their rich bioactive compounds. This study examined the bioactive compounds and inhibitory effects of crude extracts from Bombyx mori and Omphisa fuscidentalis on α-glucosidase, α-amylase, acetylcholinesterase (AChE), and tyrosinase. Fatty acids, including n-hexadecanoic acid and oleic acid, were identified in the extracts and evaluated for their inhibitory potential against the enzymes in vitro and in silico.
View Article and Find Full Text PDFChemistryOpen
January 2025
Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, 4193833697, Iran.
The inhibition of acetylcholinesterase (AChE), an enzyme responsible for the inactivation and decrease in acetylcholine in the cholinergic pathway, has been considered an attractive target for small-molecule drug discovery in Alzheimer's disease (AD) therapy. In the present study, a series of TZD derivatives were designed, synthesized, and studied for drug likeness, blood-brain barrier (BBB) permeability, and adsorption, distribution, metabolism, excretion, and toxicity (ADMET). Additionally, docking studies of the designed compounds were performed on AChE.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, Ludwig Maximilian University of Munich (LMU), 80337 Munich, Germany.
Skin cancer is one of the most prevalent malignancies in the world, with increasing incidence. In 2022, the World Health Organization estimated over 1.5 million new diagnoses of skin malignancies, primarily affecting the older population.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!