Angular distributions of OH inelastically scattered from the surfaces of the reactive hydrocarbon liquids squalane (fully saturated) and squalene (partially unsaturated) have been measured. A pulsed, rotationally cold molecular beam ( = 35 kJ mol) of OH was scattered from refreshed liquid surfaces in a vacuum. Spatially and temporally resolved OH number densities were measured by pulsed, planar laser-induced fluorescence. Results are compared with those for the inert liquid perfluoropolyether. The clearly asymmetric distributions for 45° incidence add to the weight of evidence for predominantly impulsive scattering from all three liquids. However, we propose that significant differences in their shapes may be diagnostic of contrasting reaction mechanisms. Direct, near-specular trajectories survive preferentially on squalene, consistent with an addition mechanism removing those at more backward angles. This trend is reversed for squalane, as expected for direct abstraction. The results reinforce the need to consider the effects of composition-dependent contributions from different reaction mechanisms in the modeling of OH-aging of atmospheric aerosol particles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11229065PMC
http://dx.doi.org/10.1021/acs.jpca.4c02917DOI Listing

Publication Analysis

Top Keywords

liquid surfaces
8
angular distributions
8
distributions inelastically
8
inelastically scattered
8
measured pulsed
8
reaction mechanisms
8
distinguishing mechanisms
4
mechanisms reactive
4
reactive uptake
4
uptake liquid
4

Similar Publications

Moisture-driven carbonation kinetics for ultrafast CO mineralization.

Proc Natl Acad Sci U S A

January 2025

Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China.

CO mineralization, a process where CO reacts with minerals to form stable carbonates, presents a sustainable approach for CO sequestration and mitigation of global warming. While the crucial role of water in regulating CO mineralization efficiency is widely acknowledged, a comprehensive understanding of the underlying mechanisms remains elusive. This study employs a combined experimental and atomistic simulation approach to elucidate the intricate mechanisms governing moisture-driven carbonation kinetics of calcium-bearing minerals.

View Article and Find Full Text PDF

Structural insight into sodium ion pathway in the bacterial flagellar stator from marine .

Proc Natl Acad Sci U S A

January 2025

Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan.

Many bacteria swim in liquid or swarm on surface using the flagellum rotated by a motor driven by specific ion flow. The motor consists of the rotor and stator, and the stator converts the energy of ion flow to mechanical rotation. However, the ion pathway and the mechanism of stator rotation coupled with specific ion flow are still obscure.

View Article and Find Full Text PDF

Pyrethroids are synthetic chemicals that account for 16% of the international insecticide market and have been shown to be of varying toxicity to different species. There are various methods available for detecting pyrethroids in agricultural products, but these products must be pre-treated to remove interference from the food matrix, such as through dispersion liquid-liquid microextraction (DLLME). This study employed two experimental design methods to optimize the continuous and discontinuous experimental parameters of DLLME and investigated whether DLLME combined with GC-NICI-MS is effective for detecting pyrethroids in agricultural products.

View Article and Find Full Text PDF

Tumor-derived extracellular vesicle (tEV)-associated RNAs hold promise as diagnostic biomarkers, but their clinical use is hindered by the rarity of tEVs among nontumor EVs. Here, we present EV-CLIP, a highly sensitive droplet-based digital method for profiling EV RNA. EV-CLIP utilizes the fusion of EVs with charged liposomes (CLIPs) in a microfluidic chip.

View Article and Find Full Text PDF

Separation of Highly Pure Semiconducting Single-Wall Carbon Nanotubes in Alkane Solvents via Double Liquid-Phase Extraction.

Nanomaterials (Basel)

December 2024

Department of Chemistry, University of Sherbrooke, 2500, Blvd de l'Université, Sherbrooke, QC J1K 2R1, Canada.

This study delves into the distinctive selective property exhibited by a non-conjugated cholesterol-based polymer, poly(CEM--EHA), in sorting semiconducting single-walled carbon nanotubes (s-SWCNTs) within isooctane. Comprised of 11 repeating units of cholesteryloxycarbonyl-2-hydroxy methacrylate (CEM) and 7 repeating units of 2-ethylhexyl acrylate (EHA), this non-conjugated polymer demonstrates robust supramolecular interactions across the sp surface structure of carbon nanotubes and graphene. When coupled with the Double Liquid-Phase Extraction (DLPE) technology, the polymer effectively segregates s-SWCNTs into the isooctane phase (nonpolar) while excluding metallic SWCNTs (m-SWCNTs) in the water phase (polar).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!