Aim: To review the available evidence about the strategies implemented or proposed for coverage or reimbursement for currently approved gene therapies.
Methods: A scoping review was conducted to analyze the evidence published during the years 2016 to 2023. The main search criteria were coverage or reimbursement of gene therapy by healthcare systems. The eligible articles were those that described or proposed a financing model used to provide coverage in the various systems around the world.
Results: The study identified 279 publications, and after removing duplicates and screening for eligibility, 10 were included in the study. The results show that various financing models have been proposed, including subscription-based payment models, outcome-based payment models, and amortization strategies. However, several barriers to implementing these models were identified, such as deficiencies in informatics systems for data collection, changes in laws or regulations, the lack of accessible clinical endpoints and administrative costs.
Conclusion: This scoping review provides an overview of financing strategies for gene therapies. Gene therapies can cure rare or previously intractable diseases, but their high cost can make access difficult. Publishing experiences with these models can help evaluate their use and gather more evidence for their effectiveness.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11197217 | PMC |
http://dx.doi.org/10.1186/s13023-024-03249-z | DOI Listing |
Atten Percept Psychophys
January 2025
Department of Psychology, The Ohio State University, 225 Psychology Building, 1835 Neil Ave, Columbus, OH, 43210, USA.
Humans can learn to attentionally suppress salient, irrelevant information when it consistently appears at a predictable location. While this ability confers behavioral benefits by reducing distraction, the full scope of its utility is unknown. As people locomote and/or shift between task contexts, known-to-be-irrelevant locations may change from moment to moment.
View Article and Find Full Text PDFJ Occup Rehabil
January 2025
McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA.
Purpose: We aimed to develop an online vocational rehabilitation (VR) readiness screening (VRRS) tool for young adults diagnosed with cancer. VR readiness was defined as being physically and cognitively ready to enter or return to work or school.
Methods: We developed an initial VRRS tool informed by previous studies, a scoping review to determine such a tool had not already been developed, and consultation with subject matter experts.
Support Care Cancer
January 2025
Fudan University School of Nursing, Shanghai, China and Fudan University Centre for Evidence-Based Nursing: A Joanna Briggs Institute Centre of Excellence, 305 Fenglin Rd, Shanghai, 200032, China.
Purpose: Aromatase inhibitor-associated musculoskeletal symptoms (AIMSS) are the most common adverse effects experienced by breast cancer patients. This scoping review aimed to systematically synthesize the predictors/risk factors and outcomes of AIMSS in patients with early-stage breast cancer.
Methods: A systematic search was conducted in PubMed, Web of Science, EMBASE, CINAHL, and the China National Knowledge Internet (CNKI) from inception to December 2024 following the scoping review framework proposed by Arksey and O'Malley (2005).
NPJ Digit Med
January 2025
Biomedical Data Science Center, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
The use of synthetic data is a promising solution to facilitate the sharing and reuse of health-related data beyond its initial collection while addressing privacy concerns. However, there is still no consensus on a standardized approach for systematically evaluating the privacy and utility of synthetic data, impeding its broader adoption. In this work, we present a comprehensive review and systematization of current methods for evaluating synthetic health-related data, focusing on both privacy and utility aspects.
View Article and Find Full Text PDFNat Chem Biol
January 2025
Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
Targeted protein degradation (TPD) offers a promising approach for chemical probe and drug discovery that uses small molecules or biologics to direct proteins to the cellular machinery for destruction. Among the >600 human E3 ligases, CRBN and VHL have served as workhorses for ubiquitin-proteasome system-dependent TPD. Identification of additional E3 ligases capable of supporting TPD would unlock the full potential of this mechanism for both research and pharmaceutical applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!