A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An automated in vitro wound healing microscopy image analysis approach utilizing U-net-based deep learning methodology. | LitMetric

Background: The assessment of in vitro wound healing images is critical for determining the efficacy of the therapy-of-interest that may influence the wound healing process. Existing methods suffer significant limitations, such as user dependency, time-consuming nature, and lack of sensitivity, thus paving the way for automated analysis approaches.

Methods: Hereby, three structurally different variations of U-net architectures based on convolutional neural networks (CNN) were implemented for the segmentation of in vitro wound healing microscopy images. The developed models were fed using two independent datasets after applying a novel augmentation method aimed at the more sensitive analysis of edges after the preprocessing. Then, predicted masks were utilized for the accurate calculation of wound areas. Eventually, the therapy efficacy-indicator wound areas were thoroughly compared with current well-known tools such as ImageJ and TScratch.

Results: The average dice similarity coefficient (DSC) scores were obtained as 0.958 0.968 for U-net-based deep learning models. The averaged absolute percentage errors (PE) of predicted wound areas to ground truth were 6.41%, 3.70%, and 3.73%, respectively for U-net, U-net++, and Attention U-net, while ImageJ and TScratch had considerable averaged error rates of 22.59% and 33.88%, respectively.

Conclusions: Comparative analyses revealed that the developed models outperformed the conventional approaches in terms of analysis time and segmentation sensitivity. The developed models also hold great promise for the prediction of the in vitro wound area, regardless of the therapy-of-interest, cell line, magnification of the microscope, or other application-dependent parameters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11197287PMC
http://dx.doi.org/10.1186/s12880-024-01332-2DOI Listing

Publication Analysis

Top Keywords

vitro wound
16
wound healing
16
developed models
12
wound areas
12
wound
8
healing microscopy
8
u-net-based deep
8
deep learning
8
automated vitro
4
healing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!