Purpose: PANoptosis is considered a novel type of cell death that plays important roles in tumor progression. In this study, we applied machine learning algorithms to explore the relationships between PANoptosis-related lncRNAs (PRLs) and head and neck squamous cell carcinoma (HNSCC) and established a neural network model for prognostic prediction.
Methods: Information about the HNSCC cohort was downloaded from the TCGA database, and the differentially expressed prognostic PRLs between tumor and normal samples were assessed in patients with different tumor subtypes via nonnegative matrix factorization (NMF) analysis. Subsequently, five kinds of machine-learning algorithms were used to select the core PRLs across the subtypes, and the interactive features were pooled into a neural network model to establish a PRL-related risk score (PLRS) system. Survival differences were compared via Kaplan‒Meier analysis, and the predictive effects were assessed with the areas under the ROCs. Moreover, functional enrichment analysis, immune infiltration, tumor mutation burden (TMB) and clinical therapeutic response were also conducted to further evaluate the novel predictive model.
Results: A total of 347 PRLs were identified, 225 of which were differentially expressed between tumor and normal samples. Patients were divided into two clusters via NMF analysis, in which cluster 1 had a better prognosis and more immune cells and functional infiltrates. With the application of five machine learning algorithms, we selected 13 interactive PRLs to construct the predictive model. The AUCs for the ROCs in the entire set were 0.735, 0.740 and 0.723, respectively. Patients in the low-PLRS group exhibited a better prognosis, greater immune cell enrichment, greater immune function activation, lower TMB and greater sensitivity to immunotherapy.
Conclusion: In this study, we established a novel neural network prognostic model to predict survival and identify tumor subtypes in HNSCC patients. This novel assessment system is useful for prediction, providing ideas for clinical treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00405-024-08765-z | DOI Listing |
Brief Bioinform
November 2024
Biotherapeutics Molecule Discovery, Boehringer Ingelheim Pharmaceutical Inc., 900 Ridgebury Road, Ridgefield, CT 06877, United States.
Antibody generation requires the use of one or more time-consuming methods, namely animal immunization, and in vitro display technologies. However, the recent availability of large amounts of antibody sequence and structural data in the public domain along with the advent of generative deep learning algorithms raises the possibility of computationally generating novel antibody sequences with desirable developability attributes. Here, we describe a deep learning model for computationally generating libraries of highly human antibody variable regions whose intrinsic physicochemical properties resemble those of the variable regions of the marketed antibody-based biotherapeutics (medicine-likeness).
View Article and Find Full Text PDFAccurate survival prediction of patients with long-bone metastases is challenging, but important for optimizing treatment. The Skeletal Oncology Research Group (SORG) machine learning algorithm (MLA) has been previously developed and internally validated to predict 90-day and 1-year survival. External validation showed promise in the United States and Taiwan.
View Article and Find Full Text PDFJMIR Med Educ
January 2025
Centre for Digital Transformation of Health, University of Melbourne, Carlton, Australia.
Background: Learning health systems (LHS) have the potential to use health data in real time through rapid and continuous cycles of data interrogation, implementing insights to practice, feedback, and practice change. However, there is a lack of an appropriately skilled interprofessional informatics workforce that can leverage knowledge to design innovative solutions. Therefore, there is a need to develop tailored professional development training in digital health, to foster skilled interprofessional learning communities in the health care workforce in Australia.
View Article and Find Full Text PDFFront Public Health
January 2025
Department of Computer Science, College of Engineering and Computer Science, Jazan University, Jazan, Saudi Arabia.
Introduction: The growing demand for real-time, affordable, and accessible healthcare has underscored the need for advanced technologies that can provide timely health monitoring. One such area is predicting arterial blood pressure (BP) using non-invasive methods, which is crucial for managing cardiovascular diseases. This research aims to address the limitations of current healthcare systems, particularly in remote areas, by leveraging deep learning techniques in Smart Health Monitoring (SHM).
View Article and Find Full Text PDFFront Artif Intell
January 2025
Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, Augusta, GA, United States.
Background: Large language models (LLMs) have demonstrated impressive performance on medical licensing and diagnosis-related exams. However, comparative evaluations to optimize LLM performance and ability in the domain of comprehensive medication management (CMM) are lacking. The purpose of this evaluation was to test various LLMs performance optimization strategies and performance on critical care pharmacotherapy questions used in the assessment of Doctor of Pharmacy students.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!