A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Kinetic nitrogen isotope effects of 18 amino acids degradation during burning processes. | LitMetric

Kinetic nitrogen isotope effects of 18 amino acids degradation during burning processes.

Sci Rep

Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution, East China University of Technology, Nanchang, 330013, China.

Published: June 2024

Understanding the nitrogen isotopic variations of individual amino acids (AAs) is essential for utilizing the nitrogen isotope values of individual amino acids (δN-AA) as source indicators to identify proteinaceous matter originating from biomass combustion processes. However, the nitrogen isotope effects (ε) associated with the degradation of individual amino acids during combustion processes have not been previously explored. In this study, we measured the nitrogen isotope values of residual free amino acids -following a series of controlled combustion experiments at temperatures of 160-240 °C and durations of 2 min to 8 h, as described in Part 1. δN values of proline, aspartate, alanine, valine, glycine, leucine, and isoleucine are more positive than their initial δN values after prolonged combustion. Variations in δN values of the most AAs conform to the Rayleigh fractionation during combustion and their nitrogen isotope effects (ε) are greatly impacted by their respective combustion degradation pathways. This is the first time the ε values associated with the degradation pathways of AAs during combustion have been characterized. Only the ε values associated with Pathway 1 (dehydration to form dipeptide) and 2 (simultaneous deamination and decarboxylation) are found to be significant and temperature-dependent, ranging from + 2.9 to 6.4‰ and + 0.9‰ to + 3.8‰, respectively. Conversely, ε values associated with other pathways are minor. This improves the current understanding on the degradation mechanisms of protein nitrogen during biomass burning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11196629PMC
http://dx.doi.org/10.1038/s41598-024-65544-wDOI Listing

Publication Analysis

Top Keywords

nitrogen isotope
20
amino acids
20
isotope effects
12
individual amino
12
δn values
12
values associated
12
values
8
isotope values
8
combustion processes
8
associated degradation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!