Topically Applied Therapies for the Treatment of Skin Disease: Past, Present, and Future.

Pharmacol Rev

MLBT Investments and Consultancy, Aylesbury, United Kingdom (M.Br.); MedPharm Ltd, Guildford, United Kingdom (M.Br., B.B., C.E., J.H., F.G.); Reading School of Pharmacy, Reading, United Kingdom (A.W.); School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom (R.P.C., W.J.M.); MedPharm Ltd, Durham. North Carolina (J.L., L.A., C.B.); Medicine Development and Supply, GlaxoSmithKline R&D, Stevenage, United Kingdom (M.Be.); Department of Dermatology, CUF Tejo Hospital, Lisbon, Portugal (R.V.); Centro de Investigação Interdisciplinar Egas Moniz, Egas Moniz School of Health and Science, Monte de Caparica, Portugal (M.M.); and Department of Chemistry, Coimbra Chemistry Center, University of Coimbra, Coimbra, Portugal (M.M.).

Published: August 2024

The purpose of this review is to summarize essential biological, pharmaceutical, and clinical aspects in the field of topically applied medicines that may help scientists when trying to develop new topical medicines. After a brief history of topical drug delivery, a review of the structure and function of the skin and routes of drug absorption and their limitations is provided. The most prevalent diseases and current topical treatment approaches are then detailed, the organization of which reflects the key disease categories of autoimmune and inflammatory diseases, microbial infections, skin cancers, and genetic skin diseases. The complexity of topical product development through to large-scale manufacturing along with recommended risk mitigation approaches are then highlighted. As such topical treatments are applied externally, patient preferences along with the challenges they invoke are then described, and finally the future of this field of drug delivery is discussed, with an emphasis on areas that are more likely to yield significant improvements over the topical medicines in current use or would expand the range of medicines and diseases treatable by this route of administration. SIGNIFICANCE STATEMENT: This review of the key aspects of the skin and its associated diseases and current treatments along with the intricacies of topical formulation development should be helpful in making judicious decisions about the development of new or improved topical medicines. These aspects include the choices of the active ingredients, formulations, the target patient population's preferences, limitations, and the future with regard to new skin diseases and topical medicine approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1124/pharmrev.123.000549DOI Listing

Publication Analysis

Top Keywords

topical medicines
12
topical
9
topically applied
8
drug delivery
8
diseases current
8
skin diseases
8
skin
6
diseases
6
medicines
5
applied therapies
4

Similar Publications

(), known for its aromatic leaves and rhizomes, is extensively used in traditional medicine to treat digestive issues, inflammation, pain, anxiety, and stress. The petroleum ether extract of isolates specific bioactive compounds using petroleum ether, a nonpolar solvent effective in dissolving nonpolar plant compounds. This extract potentially offers antimicrobial, anti-inflammatory, and analgesic benefits.

View Article and Find Full Text PDF

Review of Applications of Microneedling in Melasma.

J Cosmet Dermatol

January 2025

Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, China.

Background: Melasma, a common skin pigmentation disease, can negatively impact patients' mental health, social interactions, and physical appearance. Although we now have several treatments accessible, such as medicines, chemical peels, and phototherapy, which can help ease symptoms to some extent, the requirement for a long-term effective and safe treatment for patients is far from met. In the face of this problem, microneedling, as an innovative treatment, provides a new avenue for treating melasma.

View Article and Find Full Text PDF

Luliconazole (LCZ) is a topical imidazole antifungal agent with broad-spectrum activity. However, LCZ encounters challenges such as low aqueous solubility, skin retention, and penetration, which reduce its dermal bioavailability and hinder its efficacy in drug delivery. The aim of the present study was to formulate, characterize, and evaluate the in vitro antifungal efficacy of luliconazole-loaded nanostructured lipid carriers (LCZ-NLCs) against a panel of resistant fungal strains.

View Article and Find Full Text PDF

Citric acid is more effective than sodium thiosulfate in chelating calcium in a dissolution model of calcinosis.

Sci Rep

December 2024

Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester and Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK.

Calcinosis cutis affects 20-40% of patients with systemic sclerosis. This study tests the hypothesis that calcium-chelating polycarboxylic acids can induce calcium dissolution without skin toxicity or irritancy. We compared citric acid (CA) and ethylenediaminetetraacetic acid (EDTA) to sodium thiosulfate (STS) for their ability to chelate calcium in vitro using a pharmaceutical dissolution model of calcinosis (hydroxyapatite (HAp) tablet), prior to evaluation of toxicity and irritancy in 2D in vitro skin models.

View Article and Find Full Text PDF

Assessing Wound Healing in Vivo Using a Dual-Function Phosphorescent Probe Sensitive to Tissue Oxygenation and Regenerating Collagen.

ACS Appl Mater Interfaces

December 2024

Institute of Translational Medicine, Faculty of Health Sciences & Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa 999078, Macau, China.

Levels of tissue oxygenation and collagen regeneration are critical indicators in the early evaluation of wound healing. Traditionally, these factors have been assessed using separate instruments and different methodologies. Here, we adopt the spatially averaged phosphorescence lifetime approach using Re-diimine complexes (Re-probe) to enable simultaneous quantification of these two critical factors in healing wounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!