This study synthesized a carboxymethyl chitosan-modified bimetallic Co/Zn-ZIF (CZ@CMC) with strong hydrophilicity and adsorption performance via the one-pot method. Tetracycline hydrochloride (TCH) was used as the model contaminant to evaluate the adsorption and peroxymonosulfate (PMS) activation properties of CZ@CMC. Mechanism showed that the adsorption behavior occurred through pore filling, electrostatic attraction, surface complexation, hydrogen bonding, and π-π stacking. In addition, a CZ@CMC/PMS system was constructed, which had excellent catalytic performance. The hydrophilicity and selective adsorption properties of CMC conferred a greatly accelerated CZ@CMC in catalyzing the PMS process with k of 0.095 min, in which OH, O, SO, O, and Co(III) were the main ROS which quenching tests, EPR, and chemical probe experiments verified. In addition, the degradation pathways of TCH were obtained utilizing DFT and HPLC-MS and analyzed to show that the system possessed a good detoxification capacity. This work is expected to provide a green, efficient, and stable strategy to enhance the adsorption properties of catalytic materials and subsequently their co-catalytic properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.133385 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!