Green-house gas fluxes and soil microbial functional genes abundance in saturated and drained peatlands in South-West Iceland.

Sci Total Environ

Research Centre for Agriculture and Environment, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA-AA), via di Lanciola 12/A, 50125 Firenze, Italy. Electronic address:

Published: October 2024

The drainage of peatlands followed by land use conversion significantly impacts on the fluxes of green-house gases (GHGs, i.e. CO, CH, and NO) to and from the atmosphere, driven by changes in soil properties and microbial communities. In this study, we compared saturated peatlands with drained ones used for sheep grazing or cultivated, which are common in South-West Iceland. These areas exhibit different degrees of soil saturation and nitrogen (N) content, reflecting the anthropic pressure gradient. We aimed at covering knowledge gaps about lack of estimates on NO fluxes and drainage, by assessing the emissions of GHGs, and the impact of land conversion on these emissions. Moreover, we investigated soil microbial community functional diversity, and its connection with processes contributing to GHGs emission. GHGs emissions differed between saturated and drained peatlands, with increased soil respiration rates (CO emissions) and N mineralization (NO), consistent with the trend of anthropogenic pressure. Drainage drastically reduced methane (CH) emissions but increased CO emissions, resulting in a higher global warming potential (GWP). Cultivation, involving occasional tillage and fertilization, further increased NO emissions, mediated by higher N availability and conditions favorable to nitrification. Functional genes mirrored the overall trend, showing a shift from prevalent methanogenic archaea (mcrA) in saturated peatlands to nitrifiers (amoA) in drained-cultivated areas. Environmental variables and nutrient content were critical factors affecting community composition in both environments, which overall affected the GHGs emissions and the relative contribution of the three gases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.174221DOI Listing

Publication Analysis

Top Keywords

soil microbial
8
functional genes
8
saturated drained
8
drained peatlands
8
south-west iceland
8
land conversion
8
saturated peatlands
8
emissions
8
ghgs emissions
8
increased emissions
8

Similar Publications

Alteration of nitrogen sink and emission by vegetation distribution in a wetland with significant change in water level.

J Environ Manage

December 2024

Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; Department of Ecological Sciences and Engineering, Chongqing University, Chongqing, 400045, China. Electronic address:

In wetlands, hydrological conditions drive plant community distribution, forming vegetation zones with plant species and material cycling. This mediates nitrogen migration and NO emissions within wetlands. Five vegetation zones in a large wetland were studied during flooding and drought periods.

View Article and Find Full Text PDF

Effects of naturally aged microplastics on arsenic and cadmium accumulation in lettuce: Insights into rhizosphere microecology.

J Hazard Mater

December 2024

Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Naturally aged microplastics (NAMPs) are commonly found in farmland soils contaminated with heavy metals (HMs), such as arsenic (As) and cadmium (Cd); yet their combined effects on soil-plant ecosystems remain poorly understood. In this study, we investigated the toxic effects of NAMPs and As-Cd on lettuce, considering the influence of earthworm activity, and examined changes in As-Cd bioavailability in the rhizosphere. Four experimental systems were established: soil-only, soil-lettuce, soil-earthworms, and soil-lettuce-earthworms systems, with four NAMPs concentrations (0, 0.

View Article and Find Full Text PDF

Arvimicrobium flavum gen. nov., sp. nov., A Novel Genus in the Family Phyllobacteriaceae Isolated From Forest Soil.

Curr Microbiol

December 2024

Department of Biological Science, College of Science and Engineering, Sangji University, Wonju, 26339, Republic of Korea.

During the study of microbial diversity of forest soil in the Republic of Korea, a yellow pigment-producing, Gram-stain-negative, rod-shaped, motile bacterium was isolated and designated as strain 1W2. This strain grew at temperature of 10-37 °C, at pH of 5.0-9.

View Article and Find Full Text PDF

The extensive mining of bastnasite (CeFCO) has caused pollution of lanthanum (La), cerium (Ce), and fuorine (F) in the surrounding farmland soil, severely threatening the safety of the soil ecosystem. However, the interaction effects of various chemical fractions of La, Ce, and F on the composition of microbial communities are unclear. In our study, high-throughput sequencing was performed based on the pot experiments of four types of combined pollution soils, i.

View Article and Find Full Text PDF

Exploring the significance of different amendments to improve phytoremediation efficiency: focus on soil ecosystem services.

Environ Sci Pollut Res Int

December 2024

Unité de Chimie Environnementale Et Interactions Sur Le Vivant (UCEIV), Université du Littoral Côte d'Opale (ULCO), 50 Rue Ferdinand Buisson, Calais Cedex, UR4492, France.

Phytoremediation is recognized as an environmentally, economically and socially efficient phytotechnology for the reclamation of polluted soils. To improve its efficiency, several strategies can be used including the optimization of agronomic practices, selection of high-performance plant species but also the application of amendments. Despite evidences of the benefits provided by different types of amendments on pollution control through several phytoremediation pathways, their contribution to other soil ecosystem functions supporting different ecosystem services remains sparsely documented.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!