Hermetia illucens larvae can enhance the degradation of oxytetracycline (OTC) through its biotransformation. However, the underlying mechanisms mediated by gut metabolites and proteins are unclear. To gain further insights, the kinetics of OTC degradation, the functional structures of gut bacterial communities, proteins, and metabolites were investigated. An availability-adjusted first-order model effectively evaluated OTC degradation kinetics, with degradation half-lives of 4.18 and 21.71 days for OTC degradation with and without larval biotransformation, respectively. Dominant bacteria in the larval guts were Enterococcus, Psychrobacter, Providencia, Myroides, Enterobacteriaceae, and Lactobacillales. OTC exposure led to significant differential expression of proteins, with functional classification revealing involvement in digestion, transformation, and adaptability to environmental stress. Upregulated proteins, such as aromatic ring hydroxylase, acted as oxidoreductases modifying the chemical structure of OTC. Unique metabolites, aclarubicin and sancycline identified were possible OTC metabolic intermediates. Correlation analysis revealed significant interdependence between gut bacteria, metabolites, and proteins. These findings reveal a synergistic mechanism involving gut microbial metabolism and enzyme structure that drives the rapid degradation of OTC and facilitates the engineering applications of bioremediation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.174224 | DOI Listing |
Bull Environ Contam Toxicol
January 2025
Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
Ciprofloxacin (CIP) and oxytetracycline (OTC) are commonly detected antibiotic species in breeding wastewater, and microalgae-based antibiotic treatment technology is an environmentally friendly and cost-effective method for its removal. This study evaluated the effects of CIP and OTC on Scenedesmus sp. in the breeding wastewater tailwater and the removal mechanisms of antibiotics.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China. Electronic address:
Oxytetracycline (OTC), a crop-absorbable antibiotic, poses a health risk to humans through the food chain. Conversely, 24-epibrassinolide (EBL), a plant growth hormone, mitigates the toxic effects of various pollutants on plants. However, the mechanism by which exogenous EBL affects the growth of rape seedlings exposed to OTC remains largely unknown.
View Article and Find Full Text PDFRespir Res
January 2025
Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
Background: Pulmonary arterial hypertension (PAH) is a progressive disorder that can lead to right ventricular failure and severe consequences. Despite extensive efforts, limited progress has been made in preventing the progression of PAH. Mitochondrial dysfunction is implicated in the development of PAH, but the key mitochondrial functional alterations in the pathogenesis have yet to be elucidated.
View Article and Find Full Text PDFFish Physiol Biochem
January 2025
Aquatic Animal Health and Environment Division, ICAR-Central Institute of Brackishwater Aquaculture, Raja Annamalai Puram, Chennai, 600028, Tamil Nadu, India.
Oxytetracycline (OTC), an approved antibiotic for aquaculture, is under strict control and regulatory endeavour. This study compared the effects of oral administration of graded doses of OTC comprising the therapeutic (80 mg/kg biomass/day), subtherapeutic (40 mg) and overdoses (240, 400 and 800 mg) in male Nile tilapia Oreochromis niloticus fries (0.64 ± 0.
View Article and Find Full Text PDFOrphanet J Rare Dis
January 2025
Nanjing Women and Children's Healthcare Hospital, Center of Genetic Medicine, The Affiliated Obstetrics and Gynecology Hospital With Nanjing Medical University, No.123, Tianfei Xiang, Mochou Road, Nanjing, Jiangsu, China.
Background: Ornithine transcarbamylase deficiency exhibits a high degree of clinical heterogeneity, making its screening and classification challenging in some instances. In this study, we first established a simple and stable method for testing ornithine transcarbamylase activity using micro blood from newborns, rather than relying on venous blood.
Methods: The activity of ornithine transcarbamylase was assessed by measuring the concentration of citrulline produced in the reaction with carbamoyl phosphate and ornithine, using serum, plasma or micro blood.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!