Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mangrove ecosystems play an important role in carbon (C) sequestration and nitrogen (N) removal. Although Spartina alterniflora has successively invaded native mangrove habitats during the preceding two decades, the effects of this invasion on the microbial functional potential involved in nutrient cycling remain unclear. In this study, metagenomic sequencing was used to investigate microbial C and N cycling in sediments derived from S. alterniflora and three native mangrove species (Kandelia obovata, Avicennia marina, and Aegiceras corniculatum). Greater differences in functional profiles of C and N cycling-related genes were observed between S. alterniflora and mangrove sediments than between different mangrove sediments. Functional diversity was lower in S. alterniflora sediments than in native mangrove sediments. The growth of Thaumarchaeota and Proteobacteria, was enhanced due to their resilience to diversity loss, while the growth of oligotrophs, such as Chloroflexi and Firmicutes, was inhibited in S. alterniflora sediments. Compared to mangrove sediments, the abundance of genes involved in C fixation and methane production was lower in S. alterniflora sediments. However, S. alterniflora significantly increased the gene abundance of pmo which controlled the oxidation process of CH to carbon dioxide. Additionally, genes involved in nitrification were enriched, whereas genes involved in N reduction processes, such as denitrification and dissimilatory nitrate reduction to ammonium, N immobilization, and N mineralization, were depleted in S. alterniflora sediments compared to mangrove sediments. Partial least squares regression models demonstrated that the decrease in soil organic C and increase in pH after S. alterniflora invasion induced the loss of microbial functional diversity, which was the main driver of changes in the abundances of genes involved in C and N cycling. Overall, our findings indicate that S. alterniflora invasion modifies the microbial functional profile of nutrient cycling in native mangrove ecosystems and potentially weakens the capacity of mangroves to sequester carbon and remove nitrogen.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2024.121569 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!