Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Currently, monitoring the ecological conditions of watercourses is overly unitary and inefficient and is burdened by high costs. A cost-effective, efficient, self-powered sensor for incorporating the Internet of Things (IoT) into the surveillance of riverine ecosystems is lacking. This manuscript introduces a device designed for energy harvesting and sensing through a triboelectric-electromagnetic generator (CX-TEHG). The CX-TEHG is composed of a wind-driven electromagnetic generator (F-EMG), a river-driven electromagnetic generator (W-EMG), a triboelectric nanogenerator for measuring flow velocity (W-TENG), and another triboelectric nanogenerator for gauging the speed of floodwater level rise (F-TENG). It employs planetary gears to achieve a 6-fold increase in speed, facilitating efficient multienergy collection from wind and river currents. CX-TEHG achieves a peak power output of 183 mW and a power density of 373.5 W/m under environmental conditions featuring a wind speed of 4 m/s and a flow velocity of 0.5 m/s. This study developed a cost-efficient signal acquisition system and a mechanism for information transmission via a 5G module. Alerts are issued on both upper-level computers and mobile devices for river flow velocities exceeding 2.8 m/s and water levels reaching specified locations; thus, an innovative solution for applying the Internet of Things in riverine ecological monitoring is presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c02743 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!