Chagas disease predominantly affects the heart, esophagus, and colon in its chronic phase. However, the precise infection mechanisms of the causal agent Trypanosoma cruzi in these tissue types remain incompletely understood. This study investigated T. cruzi infection dynamics in skeletal (SM) and cardiac myotubes (CM) differentiated from H9c2(2-1) myoblasts (control). SM and CM were generated using 1% fetal bovine serum (FBS) without or with retinoic acid, respectively. Initial invasion efficiencies and numbers of released parasites were equivalent between undifferentiated and differentiated cells (~0.3-0.6%). Concomitantly, parasite motility patterns were similar across cell lines. However, CM demonstrated significantly higher infection kinetics over time, reaching 13.26% infected cells versus 3.12% for SM and 3.70% for myoblasts at later stages. Cellular automata modeling suggested an enhanced role for cell-to-cell transmission in driving the heightened parasitism observed in CM. The increased late-stage susceptibility of CM, potentially mediated by cell-to-cell transfer mechanisms of the parasite, aligns with reported clinical tropism patterns. The myotube infection models provide novel insights into Chagas disease pathogenesis that are not fully attainable through in vivo examination alone. Expanding knowledge in this area could aid therapeutic development for this neglected illness.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11226117 | PMC |
http://dx.doi.org/10.1371/journal.pntd.0012288 | DOI Listing |
Sci Rep
January 2025
Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, PR, Brasil.
This work investigates the anti-trypanosomal activities of ten thiohydantoin derivatives against the parasite Trypanosoma cruzi. Compounds with aliphatic chains (THD1, THD3, and THD5) exhibited the most promising IC against the epimastigote form of T. cruzi.
View Article and Find Full Text PDFEur J Med Chem
December 2024
Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-535, Recife, PE, Brazil. Electronic address:
Trypanosomatidae diseases, such as Chagas disease and leishmaniasis, are caused by protozoan parasites of the Trypanosomatidae family, namely Trypanosoma cruzi and Leishmania species, respectively. There is an urgent need for new therapies. Both pyridine and thiazole rings are recognized as important scaffolds in medicinal chemistry.
View Article and Find Full Text PDFEur J Med Chem
December 2024
School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India. Electronic address:
This study presents a comprehensive exploration of the synthesis of novel compounds targeting Chagas Disease (CD) caused by Trypanosoma cruzi. It is a global health threat with over 6-7 million infections worldwide. Addressing challenges in current treatments, the investigation explores diverse compound classes, including thiazoles, thiazolidinone, imidazole, pyrazole, 1,6-diphenyl-1H-pyrazolo[3,4-b] pyridine, pyrrole, naphthoquinone, neolignan, benzeneacyl hydrazones, and chalcones-based compounds.
View Article and Find Full Text PDFG3 (Bethesda)
December 2024
Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE 19716, USA.
Sci Rep
December 2024
Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!