Three-dimensional structured illumination microscopy (3D-SIM) and fluorescence in situ hybridization on three-dimensional preserved cells (3D-FISH) have proven to be robust and efficient methodologies for analyzing nuclear architecture and profiling the genome's topological features. These methods have allowed the simultaneous visualization and evaluation of several target structures at super-resolution. In this chapter, we focus on the application of 3D-SIM for the visualization of 3D-FISH preparations of chromosomes in interphase, known as Chromosome Territories (CTs). We provide a workflow and detailed guidelines for sample preparation, image acquisition, and image analysis to obtain quantitative measurements for profiling chromosome topological features. In parallel, we address a practical example of these protocols in the profiling of CTs 9 and 22 involved in the translocation t(9;22) in Chronic Myeloid Leukemia (CML). The profiling of chromosome topological features described in this chapter allowed us to characterize a large-scale topological disruption of CTs 9 and 22 that correlates directly with patients' response to treatment and as a possible potential change in the inheritance systems. These findings open new insights into how the genome structure is associated with the response to cancer treatments, highlighting the importance of microscopy in analyzing the topological features of the genome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-3946-7_12 | DOI Listing |
Front Hum Neurosci
December 2024
School of Computer Sciences, Universiti Sains Malaysia, Penang, Malaysia.
Emotion recognition is a critical research topic within affective computing, with potential applications across various domains. Currently, EEG-based emotion recognition, utilizing deep learning frameworks, has been effectively applied and achieved commendable performance. However, existing deep learning-based models face challenges in capturing both the spatial activity features and spatial topology features of EEG signals simultaneously.
View Article and Find Full Text PDFGenome Biol
December 2024
State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
Background: Promoters serve as key elements in the regulation of gene transcription. In mammals, loop interactions between promoters and enhancers increase the complexity of the promoter-based regulatory networks. However, the identification of enhancer-promoter or promoter-related loops in Arabidopsis remains incomplete.
View Article and Find Full Text PDFJ Neuroeng Rehabil
December 2024
School of Information Science and Technology, Fudan University, Shanghai, 200433, China.
For surface electromyography (sEMG) based human-machine interaction systems, accurately recognizing the users' gesture intent is crucial. However, due to the existence of subject-specific components in sEMG signals, subject-specific models may deteriorate when applied to new users. In this study, we hypothesize that in addition to subject-specific components, sEMG signals also contain pattern-specific components, which is independent of individuals and solely related to gesture patterns.
View Article and Find Full Text PDFComput Biol Chem
December 2024
Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia. Electronic address:
Glycogen Synthase Kinase-3 beta (GSK-3β) is a crucial enzyme linked to various cellular processes, including neurodegeneration, autophagy, and diabetes. A structurally diverse set of 1293 molecules having GSK-3β modulatory activity has been used. Molecular docking and eXplainable Artificial Intelligence (XAI) have been used concomitantly.
View Article and Find Full Text PDFNat Commun
December 2024
Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.
The emergence of single-atom catalysts offers exciting prospects for the green production of hydrogen peroxide; however, their optimal local structure and the underlying structure-activity relationships remain unclear. Here we show trace Fe, up to 278 mg/kg and derived from microbial protein, serve as precursors to synthesize a variety of Fe single-atom catalysts containing FeNO (1 ≤ x ≤ 4) moieties through controlled pyrolysis. These moieties resemble the structural features of nonheme Fe-dependent enzymes while being effectively confined on a microbe-derived, electrically conductive carbon support, enabling high-current density electrolysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!