A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Discovery and development of tyrosine-click (Y-click) reaction for the site-selective labelling of proteins. | LitMetric

With the versatile utility of bio-conjugated peptides and proteins in the fields of agriculture, food, cosmetics and pharmaceutical industry, the design of smart protocols to conjugate and modulate biomolecules becomes highly desirable. During this process, the most important consideration for biochemists is the retention of configurational integrity of the biomolecules. Moreover, this type of bioconjugation of peptide and protein becomes frivolous if the reaction is not performed with precise amino acid residues. Hence, chemo-selective, as well as site-selective reactions, that are biocompatible and possess an appropriate level of reactivity are necessary. Based on click chemistry, there are so many tyrosine (Y) conjugation strategies, such as sulfur-fluoride exchange (SuFEx), sulfur-triazole exchange (SuTEx), coupling with π-allyl palladium complexes, diazonium salts, diazodicarboxyamide-based reagents Among these techniques, diazodicarboxyamide-based Y-conjugation, which is commonly known as the "tyrosine-click (Y-click) reaction", has met the expectations of synthetic and biochemists for the tyrosine-specific functionalization of biomolecules. Over the past one and a half decades, significant progress has been made in the classical organic synthesis approach, as well as its biochemical, photochemical, and electrochemical variants. Despite such progress and increasing importance, the Y-click reaction has not been reviewed to document variations in its methodology, applications, and broad utility. The present article aims to provide a summary of the approaches for the modulation of biomolecules at the of tyrosine residue by employing the Y-click reaction. The article also highlights its application for the mapping of proteins, imaging of living cells, and in the fields of analytical and medicinal chemistry.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cc01997kDOI Listing

Publication Analysis

Top Keywords

y-click reaction
12
discovery development
4
development tyrosine-click
4
y-click
4
tyrosine-click y-click
4
reaction
4
reaction site-selective
4
site-selective labelling
4
labelling proteins
4
proteins versatile
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!