Volicitin [N-(17-hydroxylinolenoyl)-L-glutamine] and N-linolenoyl-L-glutamine were originally identified in the regurgitant of Spodoptera exigua larvae. These fatty acid amino acid conjugates (FACs) are known to be elicitors that induce plants to release volatile compounds which in turn attract natural enemies of the larvae such as parasitic wasps. FAC concentrations are regulated by enzymatic biosynthesis and hydrolysis in the intestine of Lepidoptera larvae. It has been proposed that FAC metabolism activates glutamine synthetase and plays an important role in nitrogen metabolism in larvae. In this study, we identified candidate genes encoding a FACs hydrolase in Spodoptera litura using genomic information of various related lepidopteran species in which FACs hydrolases have been reported. We analyzed the importance of FAC hydrolysis on caterpillar performance with CRISPR/Cas9 knock outs. Larvae of strains with an inactive FACs hydrolase excreted FACs in their feces. They absorbed 30% less nitrogen from the diet compared to WT caterpillars resulting in a reduction of their body weight of up to 40% compared to wild type caterpillars. These results suggest that the hydrolysis of FACs is an important metabolism for insects and that FACs are important for larval growth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493783PMC
http://dx.doi.org/10.1007/s10886-024-01512-yDOI Listing

Publication Analysis

Top Keywords

spodoptera litura
8
facs
8
nitrogen metabolism
8
facs hydrolase
8
larvae
5
knock-out acy-1
4
acy-1 gene
4
gene spodoptera
4
litura supports
4
supports notion
4

Similar Publications

Introduction: Hedychium coronarium J. König, from the Zingiberaceae family, is a rhizomatous herb used in Ayurvedic medicine for its febrifuge, anti-rheumatic, and anthelmintic properties.

Method: This study characterizes the chemical diversity and biological activities of H.

View Article and Find Full Text PDF

Exploring the adaptation mechanism of Spodoptera litura to xanthotoxin: Insights from transcriptional responses and CncC signaling pathway-mediated UGT detoxification.

Insect Biochem Mol Biol

January 2025

Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China. Electronic address:

During the long-term interaction between plants and phytophagous insects, plants generate diverse plant secondary metabolites (PSMs) to defend against insects, whereas insects persistently cause harm to plants by detoxifying PSMs. Xanthotoxin is an insect-resistant PSM that is widely found in plants. However, the understanding of detoxification mechanism of xanthotoxin in insects is still limited at present.

View Article and Find Full Text PDF

Herein, novel thiazolo[4,5-]quinoxalin-2-ones 2-6 and thiazolo[4,5-]quinoxalin-2(3)-imines 7-9 were synthesized and characterized using elemental analysis, IR spectroscopy, and H/C NMR to confirm their structures. The efficacy of the newly designed thiazolo-quinoxalines 2, 3, 4, 5, 7, 8, and 9 against the cotton leafworm (2nd and 4th instar larvae) was evaluated, and results revealed insecticidal activity with variable and good mortality percentages. A SAR study was also discussed.

View Article and Find Full Text PDF

Spodoptera litura (Lepidoptera: Noctuidae) is one of the most destructive insect pests. Insecticides remain the principal management tool to control this pest. However, indiscriminate use of insecticides has resulted in the development of resistance to a variety of insecticides in S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!