Force Fluctuations During Role-Differentiated Bimanual Movements Reflect Cognitive Impairments in Older Adults: A Cohort Sequential Study.

J Gerontol A Biol Sci Med Sci

Department of Neuromotor Behavior and Exercise, Institute of Sport and Exercise Sciences, University of Münster, Münster, Germany.

Published: October 2024

During role-differentiated bimanual movements (RDBM), an object is typically stabilized with 1 hand and manipulated with the other. RDBM require coupling both hands for coordinated action (achieved through interhemispheric connections), but also inhibition of crosstalk to avoid involuntary movements in the stabilizing hand. We investigated how healthy cognitive aging and mild cognitive impairments (MCI) affect force stabilization during an RDBM in a cohort sequential study design with up to 4 measurement points over 32 months. In total, 132 older adults (>80 years) participated in this study, 77 were cognitively healthy individuals (CHI) and 55 presented with MCI. Participants performed a visuomotor bimanual force-tracking task. They either produced a constant force with both hands (bimanual constant) or a constant force with 1 and an alternating force with the other hand (role-differentiated). We investigated force fluctuations of constant force production using the coefficient of variation (CV), detrended fluctuation analysis (DFA), and sample entropy (SEn). Results showed higher CV and less complex variability structure (higher DFA and lower SEn) during the role-differentiated compared to the bimanual constant task. Furthermore, CHI displayed a more complex variability structure during the bimanual constant, but a less complex structure during the role-differentiated task than MCI. Interestingly, this complexity reduction was more pronounced in CHI than MCI individuals, suggesting different changes in the control mechanisms. Although understanding these changes requires further research, potential causes might be structural deteriorations leading to less efficient (intra- and interhemispheric) networks because of MCI, or an inability to appropriately divert the focus of attention.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11372707PMC
http://dx.doi.org/10.1093/gerona/glae137DOI Listing

Publication Analysis

Top Keywords

constant force
12
bimanual constant
12
force fluctuations
8
role-differentiated bimanual
8
bimanual movements
8
cognitive impairments
8
older adults
8
cohort sequential
8
sequential study
8
complex variability
8

Similar Publications

The analysis of Raman and Infrared (IR) phonons in monolayered tetragonal (Sr, Ba)HfO compounds, which exhibit D symmetry and belong to the I4/mmm phase of space group 139 with Z = 2, has been conducted using normal coordinates. The SrHfO and BaHfO compounds are the first members of the Ruddlesden-Popper (RP) series denoted as (Sr, Ba)HfO with n = 1. Nine Short-Range Force Constants (SRFC) have been included in theoretical calculations to analyze the optical phonons of SrHfO and BaHfO compounds within the I4/mmm phase.

View Article and Find Full Text PDF

Molecular mechanisms of cis-oxygen bridge neonicotinoids to Apis mellifera Linnaeus chemosensory protein: Surface plasmon resonance, multiple spectroscopy techniques, and molecular modeling.

Ecotoxicol Environ Saf

January 2025

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address:

Honeybees, essential pollinators for maintaining biodiversity, are experiencing a sharp population decline, which has become a pressing environmental concern. Among the factors implicated in this decline, neonicotinoid pesticides, particularly those belonging to the fourth generation, have been the focus of extensive scrutiny due to their potential risks to honeybees. This study investigates the molecular basis of these risks by examining the binding interactions between Apis mellifera L.

View Article and Find Full Text PDF

This paper explores the process of forming arrays of vertically oriented carbon nanotubes (CNTs) localized on metal electrodes using thin porous anodic alumina (PAA) on a solid substrate. On a silicon substrate, a titanium film served as the electrode layer, and an aluminium film served as the base layer in the initial film structure. A PAA template was formed from the Al film using two-step electrochemical anodizing.

View Article and Find Full Text PDF

Moiré superlattices formed in van der Waals (vdW) bilayers of 2D materials provide an ideal platform for studying previously undescribed physics, including correlated electronic states and moiré excitons, owing to the wide-range tunability of their lattice constants. However, their crystal symmetry is fixed by the monolayer structure, and the lack of a straightforward technique for modulating the symmetry of moiré superlattices has impeded progress in this field. Herein, a simple, room-temperature, ambient method for controlling superlattice symmetry is reported.

View Article and Find Full Text PDF

Context: 3,4-Bis(3-nitrofurazan-4-yl) furoxan (DNTF) is a typical low-melting-point, high-energy-density compound that can serve as a cast carrier explosive. Therefore, understanding the safety of DNTF under different casting processes is of great significance for its efficient application. This study employed molecular dynamics simulations to investigate the effects of temperature and pressure on the self-diffusion characteristics and mechanical sensitivity of DNTF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!