The direct anodic conversion of alkali carbonates in aqueous media provides access to peroxodicarbonate, which is a safe to use and green oxidizer. Although first reports date back around 150 years, its low concentrations and limited thermal stability have consigned this reagent to oblivion. Boron-doped diamond anodes, novel electrolyser concepts for heat dissipation, and the mixed cation trick allow record breaking peroxodicarbonate concentrations >900 mM. The electrochemical generation of peroxodicarbonate was already demonstrated on a pilot scale. The inherent safety is ensured by the limited stability of the peroxodicarbonate solution, which decomposes under ambient conditions to oxygen and facilitates subsequent downstream processing. This peroxide has, in particular at higher concentrations, an unusual reactivity and seems to be an ideal reagent when peroxo-equivalents in combination with alkaline base are required. The conversions with peroxodicarbonate include the Dakin reaction, epoxidation, oxidation of amines (aliphatic and aromatic) and sulfur compounds, deborolative hydroxylation reactions, and many more. Since the base equivalents also represent the makeup chemical for pulping plants, peroxodicarbonate is an ideal reagent for the selective degradation of lignin to vanillin. Moreover, peroxodicarbonate can be used as a halogen-free bleaching agent. The emerging electrogeneration and use of this green platform oxidizer are surveyed for the first time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4cc02501f | DOI Listing |
ACS Sustain Chem Eng
July 2024
Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany.
A pilot scale plant at Technology Readiness Level (TRL) 6 comprising an electrochemical ex-cell continuous production of sodium peroxodicarbonate and a thermal depolymerization plug flow reactor for kraft lignin conversion is established. Due to the labile nature of the "green" oxidizer peroxodicarbonate, special attention must be paid to the production parameters in order to optimize its use. A simplified design model describing steady-state and transient operations is formulated and finally validated against experimental data from the electrolysis setup.
View Article and Find Full Text PDFChem Commun (Camb)
July 2024
Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany.
The direct anodic conversion of alkali carbonates in aqueous media provides access to peroxodicarbonate, which is a safe to use and green oxidizer. Although first reports date back around 150 years, its low concentrations and limited thermal stability have consigned this reagent to oblivion. Boron-doped diamond anodes, novel electrolyser concepts for heat dissipation, and the mixed cation trick allow record breaking peroxodicarbonate concentrations >900 mM.
View Article and Find Full Text PDFOrg Lett
March 2024
Johannes Gutenberg University Mainz, Department of Chemistry, Duesbergweg 10-14, 55128 Mainz, Germany.
Electrochemically generated green platform oxidizers like peroxodicarbonate (PODIC) constitute a game-changing technology in terms of sustainable chemistry while serving as an alternative counterreaction in the electrochemical hydrogen evolution. Peroxodicarbonate avoids the storage and shipping of concentrated hydrogen peroxide solution. We herein disclose an efficient method for the -oxidation of quinolines, pyridines, and complex tertiary amines.
View Article and Find Full Text PDFJACS Au
February 2023
Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
Herein, we describe an electrochemical pathway for the synthesis of sulfilimines, sulfoximines, sulfinamidines, and sulfinimidate esters from readily available low-valent sulfur compounds and primary amides or their analogues. The combination of solvents and supporting electrolytes together act both as an electrolyte as well as a mediator, leading to efficient use of reactants. Both can be easily recovered, enabling an atom-efficient and sustainable process.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
March 2023
Johannes Gutenberg University Mainz, Department of Chemistry, Duesbergweg 10-14, 55128, Mainz, Germany.
Lignin, the world's largest resource of renewable aromatics, with annually roughly 50 million tons of accruing technical lignin, mainly Kraft lignin, is highly underdeveloped regarding the production of monoaromatics. We demonstrate the oxidative depolymerization of Kraft lignin at 180 °C to produce vanillin 1 in yields up to 6.2 wt % and 92 % referred to the maximum yield gained from the quantification reaction utilizing nitrobenzene.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!