Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Two-dimensional-material-based memristors are emerging as promising enablers of new computing systems beyond von Neumann computers. However, the most studied anion-vacancy-enabled transition metal dichalcogenide memristors show many undesirable performances, e.g., high leakage currents, limited memory windows, high programming currents, and limited endurance. Here, we demonstrate that the emergent van der Waals metal phosphorus trisulfides with unconventional nondefective vacancy provide a promising paradigm for high-performance memristors. The different vacancy types (i.e., defective and nondefective vacancies) induced memristive discrepancies are uncovered. The nondefective vacancies can provide an ultralow diffusion barrier and good memristive structure stability giving rise to many desirable memristive performances, including high off-state resistance of 10 Ω, pA-level programming currents, large memory window up to 10, more than 7-bit conductance states, and good endurance. Furthermore, a high-yield (94%) memristor crossbar array is fabricated and implements multiple image processing successfully, manifesting the potential for in-memory computing hardware.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.4c00212 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!