In this work, pure and S-N/WO3 (1%-7%) nanoparticles (NPs) have been developed for the degradation of MB dye. Optical properties, vibrational analysis, morphology, structural analysis, and photocatalytic activity of the samples have been evaluated using a variety of characterization techniques, including UV-vis, PL, FTIR, SEM, and x-ray diffraction (XRD). The XRD patterns showed that the stability of the orthorhombic phase of WO3 was affected by the concentrations of S and N. In SEM, nanospheres with an average size of 80 nm of NPs have been observed. The PL results showed that the e-, h+ recombination rate for the S-N7%/WO3 sample was the lowest. The degradation of MB dye has also been investigated in order to investigate the photocatalytic performance. Remarkably, S-N7%/WO3 shows the best results, with a maximum degradation of 90% in 120 min. The stability of the improved catalyst was tested using recycling and trapping studies. S-N7%/WO3 catalyst's exceptional photocatalytic activity highlights its potential use in wastewater treatment. This study will be helpful for manufacturing innovation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0213551 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Weifang University, School of Chemistry & Chemical Engineering and Environmental Engineering, Dongfeng road 5147, 261061, Weifang, CHINA.
The effective S-scheme homojunction relies on the precise regulation of band structure and construction of advantaged charge migration interfaces. Here, the electronic structural properties of g-C3N4 were modulated through meticulous polymerization of self-assembled supramolecular precursors. Experimental and DFT results indicate that both the intrinsic bandgap and surface electronic characteristics were adjusted, leading to the formation of an in-situ reconstructed homojunction interface facilitated by intrinsic van der Waals forces.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Catalysis & Fine Chemicals, CSIR- Indian Institute of Chemical Technology, Uppal Road, Hyderabad, Telangana State 500007, India.
Photoassisted CO reduction employing a metal-free system is both challenging and fascinating. In our study, we present a structural engineering strategy to tune the potential energy barrier, which, in turn, affects the photoreduction ability. A series of porphyrin-based porous organic polymers () were hydrothermally synthesized and the influence of keto-enol tautomerization on the CO photoreduction potential has been rigorously investigated.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, 700106, India.
The conversion of solar energy into chemical energy or high-value chemicals has attracted considerable research interest in the context of the global energy crisis. Hydrogen peroxide (HO) is a versatile and powerful oxidizing agent widely used in chemical synthesis and medical disinfection. HO also serves as a clean energy source in fuel cells, generating electricity with zero-carbon emissions.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
School of Environmental and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China. Electronic address:
Carbon dots (CDs) mediated g-CN (CN) is a promising visible-light-driven semiconductor in catalyzing peroxymonosulfate (PMS) for aqueous contaminants remediation. However, the poor dispersibility of powered catalyst and its challenging recyclability impede their broader application. Herein, we embedded FeN bridge within the g-CN framework and immobilized g-CN gel beads (CA/FNCCN) through a 3D cross-linking process with sodium alginate.
View Article and Find Full Text PDFEnviron Res
January 2025
College of Civil Engineering, Hefei University of Technology, Hefei, 238000, China; Chinaland Solar Energy Co., Ltd., Hefei, 238000, China. Electronic address:
The preparation strategy is the important factor to obtain the effective photocatalyst, and the thermal decomposition could be used to prepare photocatalysts with high crystallinity and photoactivity. In this paper, thermal decomposition method was used to deposit CuO nanoparticles on TiO nanotube arrays (TiO NTs), and the TiO NTs/CuO exhibited remarkably high visible light absorption and photoelectrocatalytic performances toward dye degradation and Cr(VI) reduction. The potential degradation pathway and toxicities of rhodamine B (RhB) dyes and intermediates were investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!