Cardiovascular diseases (CVDs) stand as a predominant global health concern, introducing vast socioeconomic challenges. In addressing this pressing dilemma, enhanced diagnostic modalities have become paramount, positioning electrochemical biosensing as an instrumental innovation. This comprehensive review navigates the multifaceted terrain of CVDs, elucidating their defining characteristics, clinical manifestations, therapeutic avenues, and intrinsic risk factors. Notable emphasis is placed on pivotal diagnostic tools, spotlighting cardiac biomarkers distinguished by their unmatched clinical precision in terms of relevance, sensitivity, and specificity. Highlighting the broader repercussions of CVDs, there emerges an accentuated need for refined diagnostic strategies. Such an exploration segues into a profound analysis of electrochemical biosensing, encapsulating its foundational principles, diverse classifications, and integral components, notably recognition molecules and transducers. Contemporary advancements in biosensing technologies are brought to the fore, emphasizing pioneering electrode architectures, cutting-edge signal amplification processes, and the synergistic integration of biosensors with microfluidic platforms. At the core of this discourse is the demonstrated proficiency of biosensors in detecting cardiovascular anomalies, underpinned by empirical case studies, systematic evaluations, and clinical insights. As the narrative unfolds, it addresses an array of inherent challenges, spanning intricate technicalities, real-world applicability constraints, and regulatory considerations, finally, by casting an anticipatory gaze upon the future of electrochemical biosensing, heralding a new era of diagnostic tools primed to revolutionize cardiovascular healthcare.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4tb00333k | DOI Listing |
JACS Au
December 2024
Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, China.
Electrochemical biosensors are gaining attention as powerful tools in cancer diagnosis, particularly in liquid biopsy, due to their high efficiency, rapid response, exceptional sensitivity, and specificity. However, the complexity of intra- and intertumor heterogeneity, with variations in genetic and protein expression profiles and epigenetic modifications, makes electrochemical biosensors susceptible to false-positive or false-negative diagnostic outcomes. To address this challenge, there is growing interest in simultaneously analyzing multiple biomarkers to reveal molecular characteristics of tumor heterogeneity for precise cancer diagnosis.
View Article and Find Full Text PDFJACS Au
December 2024
Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States.
In the past decade, conjugated oligoelectrolytes (COEs) and conjugated polyelectrolytes (CPEs) have emerged at the forefront of active materials in bioanalytical and electrochemical settings due to their unique electronic and ionic properties. These materials possess π-conjugated backbones with ionic functionalities at the ends of their side chains, granting them water solubility and facilitating their processability, exploration, and applications in aqueous environments. In this perspective, the basis for evaluating their figures of merit in selected bioanalytical and electrochemical contexts will be provided and contextualized.
View Article and Find Full Text PDFChem Biomed Imaging
December 2024
Department of Chemistry "G.Ciamician", University of Bologna, UE4, Via. P. Gobetti 85, 40129 Bologna, Italy.
Electrochemiluminescence (ECL) is nowadays a powerful technique widely used in biosensing and imaging, offering high sensitivity and specificity for detecting and mapping biomolecules. Screen-printed electrodes (SPEs) offer a versatile and cost-effective platform for ECL applications due to their ease of fabrication, disposability, and suitability for large-scale production. This research introduces a novel method for improving the ECL characteristics of screen-printed carbon electrodes (SPCEs) through the application of CO laser treatment following fabrication.
View Article and Find Full Text PDFMikrochim Acta
December 2024
School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
A novel proposal is introduced with an unlabeled electrochemical immunosensor for the detection of tumor broad-spectrum biomarker vascular endothelial growth factor (VEGF165) Copper-based metal organic frameworks (Cu MOFs)-carbon nanotubes (MWCNTs) were employed as its substrates, functionalized with methylene blue (MB) for signal enhancement. Cu-MOFs-MWCNTs nanocomposites were synthesized successfully via a solvothermal method and were then deposited on the surface of a glassy carbon electrode (GCE), with the addition of methylene blue to amplify the signal. Due to the expansive specific surface area provided by the carbon nanotubes and the amino groups facilitated by the metal-organic framework nanomaterials, the anti-VEGF165 monoclonal antibody was immobilized on the electrochemical immunosensor through covalent bonding, which could bind specifically to VEGF165, thereby causing a detectable change in the current.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano, 77, 38123, Trento, Italy.
In this study, DL-phenylalanine modified with a multiwall carbon nanotube paste electrode is used as advanced electrochemical sensor for analysing of 0.1 mM caffeic acid (CFA) with simultaneous detection of riboflavin (RFN). The developed sensors include electrochemically polymerized DL-phenylalanine (DL-PA) modified multiwall carbon nanotube paste electrode [DL-PAMMCNTPE] and bare multiwall carbon nanotube paste electrode [BMCNTPE].
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!