Septoria tritici blotch (STB) caused by the fungal pathogen anamorph Rob. ex Desm., is an important wheat pathogen worldwide, reported to be major wheat production threating factor, posing considerable yield loss every year. Developing resistant cultivars is an efficient, economical, environmentally friendly and simple approach for managing STB. This study was carried out to evaluate spring bread wheat lines for their reaction to STB disease under field conditions; to associate phenotypic and genotypic data for identification of STB disease resistance; and to identify genomic region(s) associated with resistance to STB in spring bread wheat lines. Two hundred forty (240) spring bread wheat lines were evaluated under field conditions in non-replicated trials, using an augmented design. The trials were conducted at three locations (Kulumsa Agricultural Research Center, Madda Walabu University Research Site and Sinana Agricultural Research Center) in 2017 main cropping season (July to December). Out of these 240 wheat lines, 123 of them were genotyped with 10263 single nucleotide polymorphism (SNPs) markers and population structure and association mapping analysis was done. The wheat lines showed significant variations in percentage disease severity and area under the disease progress curve at all the three locations they were evaluated. The wheat lines were classified as resistant, moderately resistant, moderately susceptible and susceptible based on the percentage disease severity scored. Five wheat lines were found to be resistant to STB in all the three locations and are recommended for direct release by the national program and parentage purposes in wheat breeding programs. The 123 wheat lines were clustered into 3 subpopulations in which the first cluster contained 99 wheat lines; the second 17 and the last one 7. Among the polymorphic 8127 SNPs markers, 26 markers on chromosomes 7B, 1D, 3A, 2B, 6B and 3D were found to be significantly ( < 0.001) associated with STB resistance so that they can be utilized for marker assisted selection and gene pyramiding in resistance breeding programs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11190591PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e32265DOI Listing

Publication Analysis

Top Keywords

wheat lines
36
bread wheat
16
wheat
13
spring bread
12
three locations
12
lines
9
association mapping
8
septoria tritici
8
tritici blotch
8
stb disease
8

Similar Publications

Overexpression of AtbZIP69 in transgenic wheat confers tolerance to nitrogen and drought stress.

Planta

January 2025

State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.

AtbZIP69 overexpression in wheat significantly enhanced drought and low nitrogen tolerance by modulating ABA synthesis, antioxidant activity, nitrogen allocation, and transporter gene expression, boosting yield. In this study, we generated wheat plants with improved low nitrogen (LN) and drought tolerance by introducing AtbZIP69, a gene encoding a basic leucine zipper domain transcription factor, into the wheat cultivar Shi 4056. AtbZIP69 localized to the nucleus and activated transcription.

View Article and Find Full Text PDF

Background: Changes in the temperature induction response are potential tools for the empirical assessment of plant cell tolerance. This technique is used to identify thermotolerant lines in field crops. In the present investigation, ten-day-old seedlings of six wheat genotypes released by Dr.

View Article and Find Full Text PDF

Hybrid maize seed production in Africa is dependent upon manual detasseling of the female parental lines, often resulting in plant damage that can lead to reduced seed yields on those detasseled lines. Additionally, incomplete detasseling can result in hybrid purity issues that can lead to production fields being rejected. A unique nuclear genetic male sterility seed production technology, referred to as Ms44-SPT, was developed to avoid hybrid seed loss and to improve the purity and quality of hybrid maize production.

View Article and Find Full Text PDF

TabHLH489 suppresses nitrate signaling by inhibiting the function of TaNLP7-3A in wheat.

J Integr Plant Biol

December 2024

The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao, 266237, China.

Nitrate not only serves as the primary nitrogen source for terrestrial plants but also serves as a critical signal in regulating plant growth and development. Understanding how plant responses to nitrate availability is essential for improving nitrogen use efficiency in crops. Herein, we demonstrated that the basic helix-loop-helix (bHLH) transcription factor TabHLH489 plays a crucial negative regulatory role in wheat nitrate signaling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!