Impact of heteroaggregation between microplastics and algae on particle vertical transport.

Nat Water

Department of Environmental Systems Science, ETH Zürich, Zurich, Switzerland.

Published: June 2024

Understanding the impacts of microplastics (MPs) on aqueous environments requires understanding their transport dynamics and how their presence affects other natural processes and cycles. In this context, one aspect to consider is how MPs interact with freshwater snow (FWS), a mixture of algae and natural particles. FWS is one of the primary drivers of the flux of organic matter from the water surface to the bottom sediment, where zooplankton, diurnal migration, fish faecal pellets settling and turbulent mixing can also play prominent roles. Understanding how MPs and FWS heteroaggregation affects their respective settling velocities is important to assess not only MPs fate and transport but also their ecological impacts by altering FWS deposition and thereby nutrient cycling. In this present study, we obtained a mechanistic understanding of the processes controlling MPs settling dynamics and heteroaggregation with FWS and the subsequent impacts on the settling rates of both MPs and ballasted FWS. Here we used a plexiglass column equipped with a stereoscopic camera system to track the settling velocities of (1) MPs of various compositions, densities and morphologies, (2) FWS flocs and (3) MP-FWS agglomerates. For each experimental set, thousands of particles were tracked over a series of image sequences. We found that agglomerates with high-density MPs settled at least twofold faster than FWS alone, implying a much smaller residence time in the water column, except for cases with MP fibres or low-density plastics. These findings will help to refine MP fate models and, while contingent on MPs number, may impact biogeochemical cycles by changing the flux of nutrients contained in FWS to the sediment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11192633PMC
http://dx.doi.org/10.1038/s44221-024-00248-zDOI Listing

Publication Analysis

Top Keywords

mps
9
fws
9
settling velocities
8
settling
5
impact heteroaggregation
4
heteroaggregation microplastics
4
microplastics algae
4
algae particle
4
particle vertical
4
vertical transport
4

Similar Publications

Osmoregulation affects elimination of microplastics in fish in freshwater and marine environments.

Sci Total Environ

January 2025

Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8563, Chiba, Japan; Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa 277-8564, Chiba, Japan.

In recent decades, microplastics (MPs) have emerged as one of the biggest environmental challenges in aquatic environments. Ingestion and toxicity of MPs in seawater (SW) and freshwater (FW) fish have been studied extensively both in field and laboratory settings. However, the basic mechanism of how fish deal with MPs in SW and FW remains unclear, although physiological conditions of fish differ significantly in the two environments.

View Article and Find Full Text PDF

Cooperation of Lactoplantibacillus plantarum and polyethylene microplastics facilitated the disappearance of tetracycline during anaerobic fermentation of whole plant maize.

J Hazard Mater

January 2025

College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory of Animal Genetics, Breeding & Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China. Electronic address:

In agricultural production systems, the harm of both antibiotics and microplastics (MPs) to human health has been an important and continuously concerned issue. A small bagged silage production system was designed to investigate the effects of Lactoplantibacillus plantarum, polyethylene (PE) -MPs and their mixture on the silage fermentation and chemical composition of Tetracycline (TET) -contaminated whole plant maize. In addition, the bacterial community of silage samples was analyzed by using next generation genome sequencing technology.

View Article and Find Full Text PDF

Integrating machine learning, suspect and nontarget screening reveal the interpretable fates of micropollutants and their transformation products in sludge.

J Hazard Mater

January 2025

School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. Electronic address:

Activated sludge enriches vast amounts of micropollutants (MPs) when wastewater is treated, posing potential environmental risks. While standard methods typically focus on target analysis of known compounds, the identity, structure, and concentration of transformation products (TPs) of MPs remain less understood. Here, we employed a novel approach that integrates machine learning for the quantification of nontarget TPs with advanced target, suspect, and nontarget screening strategies.

View Article and Find Full Text PDF

Microalgae-based wastewater treatment could realize simultaneous nutrients recovery and CO sequestration. However, impacts of environmental microplastics (MPs) and antibiotic co-exposure on microalgal growth, nutrients removal, intracellular nitric oxide (NO) accumulation and subsequent nitrous oxide (NO) emission are unclarified, which could greatly offset the CO sequestration benefit. To reveal the potential impacts of environmental concentrations of MPs and antibiotic co-exposure on microalgal greenhouse gas mitigation, this study investigated the effects of representative MPs (PE, PVC, PA), antibiotic sulfamethoxazole (SMX), and nitrite (NO-N) in various combinations on attached Chlorella sorokiniana growth, nutrients removal, anti-oxidative responses, and NO emission originated from intracellular NO build-up.

View Article and Find Full Text PDF

Molecular-level insights of microplastic-derived soluble organic matter and heavy metal interactions in different environmental occurrences through EEM-PARAFAC and FT-ICR MS.

J Hazard Mater

December 2024

College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China. Electronic address:

The interactions between microplastic-derived dissolved organic matter (MPs-DOM) and heavy metals (Cu, Pb, and Cd) regulate the complex environmental transport behavior of pollutants in terrestrial and aquatic environments. In this study, fluorescence excited emission matrix spectroscopy combined with parallel factor analysis (EEM-PARAFAC) and electrospray ionization coupled Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) were employed to investigate the complexation mechanism of MPs-DOM with heavy metals, as well as the effects of different environmental occurrences of MPs-DOM on the transport behaviors of heavy metals in saturated porous medium. The findings demonstrated that MPs-DOM, particularly humic-like substances containing aromatic structures and various oxygen functional groups, could form stable complexes with heavy metals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!