Although abundant literature is currently available on the use of deep learning for breast cancer detection in mammography, the quality of such literature is widely variable. To evaluate published literature on breast cancer detection in mammography for reproducibility and to ascertain best practices for model design. The PubMed and Scopus databases were searched to identify records that described the use of deep learning to detect lesions or classify images into cancer or noncancer. A modification of Quality Assessment of Diagnostic Accuracy Studies (mQUADAS-2) tool was developed for this review and was applied to the included studies. Results of reported studies (area under curve [AUC] of receiver operator curve [ROC] curve, sensitivity, specificity) were recorded. A total of 12,123 records were screened, of which 107 fit the inclusion criteria. Training and test datasets, key idea behind model architecture, and results were recorded for these studies. Based on mQUADAS-2 assessment, 103 studies had high risk of bias due to nonrepresentative patient selection. Four studies were of adequate quality, of which three trained their own model, and one used a commercial network. Ensemble models were used in two of these. Common strategies used for model training included patch classifiers, image classification networks (ResNet in 67%), and object detection networks (RetinaNet in 67%). The highest reported AUC was 0.927 ± 0.008 on a screening dataset, while it reached 0.945 (0.919-0.968) on an enriched subset. Higher values of AUC (0.955) and specificity (98.5%) were reached when combined radiologist and Artificial Intelligence readings were used than either of them alone. None of the studies provided explainability beyond localization accuracy. None of the studies have studied interaction between AI and radiologist in a real world setting. While deep learning holds much promise in mammography interpretation, evaluation in a reproducible clinical setting and explainable networks are the need of the hour.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188703 | PMC |
http://dx.doi.org/10.1055/s-0043-1775737 | DOI Listing |
Background: Pivotal Alzheimer's Disease (AD) trials typically require thousands of participants, resulting in long enrollment timelines and substantial costs. We leverage deep learning predictive models to create prognostic scores (forecasted control outcome) of trial participants and in combination with a linear statistical model to increase statistical power in randomized clinical trials (RCT). This is a straightforward extension of the traditional RCT analysis, allowing for ease of use in any clinical program.
View Article and Find Full Text PDFLecanemab, a humanized IgG1 monoclonal antibody that binds with high affinity to amyloid-beta (Aβ) protofibrils, was formally evaluated as a treatment for early Alzheimer's disease in a phase 2 study (Study 201) and the phase 3 Clarity AD study. These trials both included an 18-month, randomized study (core) and an open-label extension (OLE) phase where eligible participants received open-label lecanemab for up to 30 months to date. Clinical (CDR-SB, ADAS-Cog14, and ADCS-MCI-ADL), biomarker (PET, Aβ42/40 ratio, and ptau181) and safety outcomes were evaluated.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Relecura, Bangalore, karnataka, India.
Background: Clinical Dementia Rating (CDR) and its evaluation have been important nowadays as its prevalence in older ages after 60 years. Early identification of dementia can help the world to take preventive measures as most of them are treatable. The cellular Automata (CA) framework is a powerful tool in analyzing brain dynamics and modeling the prognosis of Alzheimer's disease.
View Article and Find Full Text PDFBackground: Lecanemab is a humanized IgG1 monoclonal antibody binding with high affinity to protofibrils of amyloid-beta (Aβ) protein. In clinical studies, lecanemab has been shown to reduce markers of amyloid in early symptomatic Alzheimer's disease (AD) and slow decline on clinical endpoints of cognition and function. Herein, a modeling approach was used to correlate amyloid reduction with change in rate of AD progression.
View Article and Find Full Text PDFBackground: Lecanemab is a humanized IgG1 monoclonal antibody that binds with high affinity to Aβ soluble protofibrils. In two clinical study evaluations of lecanemab, Clarity AD (NCT03887455) and lecanemab phase 2 study (Study 201, NCT01767311), the drug showed statistically significant reduction in disease progression during 18 months of treatment relative to placebo. Anti-amyloid immunotherapy can result in higher rates of "pseudo-atrophy" (ie, whole brain volume loss or ventricular enlargement) relative to disease progression observed in placebo-treated subjects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!