A Heat Emergency: Urban Heat Exposure and Access to Refuge in Richmond, VA.

Geohealth

Virginia Department of Health Office of Emergency Medical Services Glen Allen VA USA.

Published: June 2024

The urban heat island effect exacerbates independent climate change-induced shifts toward longer, stronger, and more frequent heat extremes. Environmental inequity, driven by a history of racially motivated urban planning policies, has led particular demographics to bear the worst impacts of urban heat exposure and thus also climate change. These impacts cause adverse health outcomes in the form of heat emergencies. Through a novel demographic and spatial analysis of heat-related illness Emergency Medical Services data from Richmond, Virginia, this study investigates the relationships between heat health emergencies and intra-urban heat islands quantified through three heat exposure metrics. We also evaluate the accessibility of built refuge from urban heat in the form of public transit infrastructure, libraries, and government cooling centers in relation to these emergencies. We found that heat emergencies are inequitably distributed among racial, age, and socioeconomic groups in Richmond, particularly among residents identified as Male, Black or African American, 50+ years old, and experiencing mental health, intoxication, and/or homelessness. We found significant associations between the location of these heat emergencies and urban heat islands as estimated from remotely-sensed surface and community science-derived air temperature metrics, but not a co-estimated heat index. We also found that available refuge facilities are insufficiently located to protect individuals with reduced mobility across areas with the highest number of heat-related health emergencies. Community involvement in the mitigation and management of extreme heat threats, especially for those disproportionately impacted, is necessary to decrease the number of summertime heat illnesses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11191222PMC
http://dx.doi.org/10.1029/2023GH000985DOI Listing

Publication Analysis

Top Keywords

urban heat
20
heat
16
heat exposure
12
heat emergencies
12
health emergencies
8
heat islands
8
urban
6
emergencies
6
heat emergency
4
emergency urban
4

Similar Publications

Biophysical effects of croplands on land surface temperature.

Nat Commun

December 2024

Department of Natural Resources and the Environment, University of Connecticut, Storrs, CT, USA.

Converting natural vegetation to croplands alters the local land surface energy budget. Here, we use two decades of satellite data and a physics-based framework to analyse the biophysical mechanisms by which croplands influence daily mean land surface temperature (LST). Globally, 60% of croplands exhibit an annual warming effect, while 40% have a cooling effect compared to their surrounding natural ecosystems.

View Article and Find Full Text PDF

Future increase in compound soil drought-heat extremes exacerbated by vegetation greening.

Nat Commun

December 2024

Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China.

Compound soil drought and heat extremes are expected to occur more frequently with global warming, causing wide-ranging socio-ecological repercussions. Vegetation modulates air temperature and soil moisture through biophysical processes, thereby influencing the occurrence of such extremes. Global vegetation cover is broadly expected to increase under climate change, but it remains unclear whether vegetation greening will alleviate or aggravate future increases in compound soil drought-heat events.

View Article and Find Full Text PDF

Assessing the geographical diversity of climate change risks in Japan by overlaying climatic impacts with exposure and vulnerability indicators.

Sci Total Environ

December 2024

Center for Climate Change Adaptation, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan. Electronic address:

Understanding multifaceted climate change risks and their interconnections is essential for effective adaptation strategies, which require comprehensive assessments of both climatic impact variations and social-environmental exposures/vulnerabilities. This study examines these interconnections and creates multitier delineations of future climate risks across Japan by overlaying homogeneous impact zones (HIZs) with exposure-vulnerability complexes (EVCs). We delineated eight EVC regions, each exhibiting similar patterns of exposure and vulnerability, via multivariate clustering and similarity search on the basis of future population and land cover/use data.

View Article and Find Full Text PDF

To comprehensively explore syngas cocombustion technology, gasification experiments in a bench-scale circulating fluidized bed (CFB) and three-dimensional (3D) numerical simulations of a coal-fired boiler furnace have been conducted. In the amplification experiment of biomass gasification, sawdust has been gasified using air, oxygen-enriched air, and steam. The highest heating value of the syngas products reaches 12.

View Article and Find Full Text PDF

The urban environment impacts residents' health and well-being in many ways. Environmental benefits and risks may be interactively and inequitably distributed across different populations in cities, and these patterns may change over time. Here, we assess the spatial distribution of environmental risks and benefits in pairs, considering synergies and trade-offs, in an illustrative metropolitan area (Metro Vancouver) in Canada in the years 2006 and 2016.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!