A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Data-centric species distribution modeling: Impacts of modeler decisions in a case study of invasive European frog-bit. | LitMetric

Premise: Species distribution models (SDMs) are widely utilized to guide conservation decisions. The complexity of available data and SDM methodologies necessitates considerations of how data are chosen and processed for modeling to enhance model accuracy and support biological interpretations and ecological applications.

Methods: We built SDMs for the invasive aquatic plant European frog-bit using aggregated and field data that span multiple scales, data sources, and data types. We tested how model results were affected by five modeler decision points: the exclusion of (1) missing and (2) correlated data and the (3) scale (large-scale aggregated data or systematic field data), (4) source (specimens or observations), and (5) type (presence-background or presence-absence) of occurrence data.

Results: Decisions about the exclusion of missing and correlated data, as well as the scale and type of occurrence data, significantly affected metrics of model performance. The source and type of occurrence data led to differences in the importance of specific explanatory variables as drivers of species distribution and predicted probability of suitable habitat.

Discussion: Our findings relative to European frog-bit illustrate how specific data selection and processing decisions can influence the outcomes and interpretation of SDMs. Data-centric protocols that incorporate data exploration into model building can help ensure models are reproducible and can be accurately interpreted in light of biological questions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11192162PMC
http://dx.doi.org/10.1002/aps3.11573DOI Listing

Publication Analysis

Top Keywords

data
13
species distribution
12
european frog-bit
12
field data
8
exclusion missing
8
missing correlated
8
correlated data
8
type occurrence
8
occurrence data
8
data-centric species
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!