Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Premise: Species distribution models (SDMs) are widely utilized to guide conservation decisions. The complexity of available data and SDM methodologies necessitates considerations of how data are chosen and processed for modeling to enhance model accuracy and support biological interpretations and ecological applications.
Methods: We built SDMs for the invasive aquatic plant European frog-bit using aggregated and field data that span multiple scales, data sources, and data types. We tested how model results were affected by five modeler decision points: the exclusion of (1) missing and (2) correlated data and the (3) scale (large-scale aggregated data or systematic field data), (4) source (specimens or observations), and (5) type (presence-background or presence-absence) of occurrence data.
Results: Decisions about the exclusion of missing and correlated data, as well as the scale and type of occurrence data, significantly affected metrics of model performance. The source and type of occurrence data led to differences in the importance of specific explanatory variables as drivers of species distribution and predicted probability of suitable habitat.
Discussion: Our findings relative to European frog-bit illustrate how specific data selection and processing decisions can influence the outcomes and interpretation of SDMs. Data-centric protocols that incorporate data exploration into model building can help ensure models are reproducible and can be accurately interpreted in light of biological questions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11192162 | PMC |
http://dx.doi.org/10.1002/aps3.11573 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!