Objective: The purpose of this in vitro study was to evaluate the potential remineralization of enamel and dentine erosion lesions after the application of five different toothpastes.
Methodology: A total of 104 enamel and dentine samples were prepared from maxillary third molars. Each group was divided according to the toothpaste application mode (topical = 56; brushing = 48) and the toothpaste used seven topical groups and six brushing groups (n = 8). The groups included negative control (NC), positive control (PC), Sensodyne Pronamel (SP), Regenerate (R), Regenerate with boosting serum (R+), Colgate Duraphat 5000 (CD), and tooth mousse (TM).
Results: The statistical analysis showed significant surface microhardness (SMH) change. All enamel groups showed a significant decrease in SMH compared to NC for both application modes. However, no significance was recorded between test groups. Similar results were observed between dentine groups and their relevant controls for both application modes, except brushed R and R+ groups, which were insignificant to their NC. For topical groups, TM showed a significant increase in SMH. While R and R+ showed lower loss than SP and CD.
Conclusions: All tested agents offered a degree of remineralization in both enamel and dentine with no significant difference between agents in enamel groups while R, R+, and TM offered better results in dentine groups.
Clinical Significance: For dentine groups, similar findings were observed with superior tooth surface protection with the application of TM over other agents. Tooth surface remineralization was achieved when agents were either applied topically or brushed over the surface.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11193552 | PMC |
http://dx.doi.org/10.7759/cureus.62921 | DOI Listing |
J Conserv Dent Endod
November 2024
Department of Conservative Dentistry and Endodontics, Guru Nanak Dev Dental College and Research Institute, Sangrur, Punjab, India.
Aims: This pilot study aimed to compare the marginal adaptation of composite resin at the tooth-restoration interface, before and after radiation.
Subjects And Methods: Fifteen extracted premolars were divided into 2 experimental groups (based on the timing of irradiation) and 1 control group of 5 teeth each. In Group I (control group), teeth were restored but not exposed to radiation at any stage, Group II: teeth were irradiated before cavity preparation and restoration, and Group III: after cavity preparation and restoration employing selective etch technique, teeth were exposed to radiation.
Molecules
December 2024
Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan.
Mild hypophosphatasia (HPP) can be difficult to distinguish from other bone disorders in the absence of typical symptoms such as the premature loss of primary teeth. Therefore, this study aimed to analyze the crystallinity of hydroxyapatite (HAp) and the three-dimensional structure of collagen in HPP teeth at the molecular level and to search for new biomarkers of HPP. Raman spectroscopy was used to investigate the molecular structure, composition, and mechanical properties of primary teeth from healthy individuals and patients with HPP.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103, USA.
Patients with diabetes mellitus (DM) have an increased risk of tooth decay caused by alterations in their tooth development and their oral environment, as well as a tendency to present with pulp infection due to compromised immune response. The present study analyzed the characteristic alterations in tooth development under DM conditions using incisors from type 2 diabetic mouse model (T2DM mice). In micro-CT analyses, T2DM mice showed delayed dentin and enamel formation.
View Article and Find Full Text PDFDiagnostics (Basel)
December 2024
Department of Orthodontics, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
The finite element method (FEM) is an advanced numerical technique that can be applied in orthodontics to study tooth movements, stresses, and deformations that occur during orthodontic treatment. It is also useful for simulating and visualizing the biomechanical behavior of teeth, tissues, and orthodontic appliances in various clinical scenarios. The objective of this research was to analyze the mechanical behavior of teeth, tissues, and orthodontic appliances in various clinical scenarios.
View Article and Find Full Text PDFJ Esthet Restor Dent
January 2025
Department of Prosthodontics, Propaedeutics and Dental Materials, School of Dentistry, Christian-Albrechts University at Kiel, Kiel, Germany.
Objective: Investigation of the mechanical properties of occlusal veneers made from zirconia with varying translucency, bonded to different tooth substrates.
Materials And Methods: Sixty-four extracted molars were divided into two groups: preparation within enamel (E) or extending into dentin (D). Veneers were milled from four zirconia ceramics (n = 8): 5Y-TZP (HT), a multilayer of 5 and 3Y-TZP (GT), 3Y-TZP (LT), and 4Y-TZP (MT).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!