During liver ischemia-reperfusion injury, existing mechanisms involved oxidative stress, calcium overload, and the activation of inflammatory responses involve mitochondrial injury. Mitochondrial autophagy, a process that maintains the normal physiological activity of mitochondria, promotes cellular metabolism, improves cellular function, and facilitates organelle renewal. Mitochondrial autophagy is involved in oxidative stress and apoptosis, of which the PINK1-Parkin pathway is a major regulatory pathway, and the deletion of PINK1 and Parkin increases mitochondrial damage, reactive oxygen species production, and inflammatory response, playing an important role in mitochondrial quality regulation. In addition, proper mitochondrial permeability translational cycle regulation can help maintain mitochondrial stability and mitigate hepatocyte death during ischemia-reperfusion injury. This mechanism is also closely related to oxidative stress, calcium overload, and the aforementioned autophagy pathway, all of which leads to the augmentation of the mitochondrial membrane permeability transition pore opening and cause apoptosis. Moreover, the release of mitochondrial DNA (mtDNA) due to oxidative stress further aggravates mitochondrial function impairment. Mitochondrial fission and fusion are non-negligible processes required to maintain the dynamic renewal of mitochondria and are essential to the dynamic stability of these organelles. The Bcl-2 protein family also plays an important regulatory role in the mitochondrial apoptosis signaling pathway. A series of complex mechanisms work together to cause hepatic ischemia-reperfusion injury (HIRI). This article reviews the role of mitochondria in HIRI, hoping to provide new therapeutic clues for alleviating HIRI in clinical practice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11193119 | PMC |
http://dx.doi.org/10.1093/gastro/goae066 | DOI Listing |
J Mol Cell Cardiol Plus
September 2024
O'Brien Institute Department, St Vincent's Institute of Medical Research, Victoria 3065, Australia.
Dynamin-related protein 1 (Drp1) is a mitochondrial fission protein and a viable target for cardioprotection against myocardial ischaemia-reperfusion injury. Here, we reported a novel Drp1 inhibitor (DRP1i1), delivered using a cardiac-targeted nanoparticle drug delivery system, as a more effective approach for achieving acute cardioprotection. DRP1i1 was encapsulated in cubosome nanoparticles with conjugated cardiac-homing peptides (NanoDRP1i1) and the encapsulation efficiency was 99.
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China.
Background: Lung transplantation is the only effective therapeutic option for patients with end-stage lung disease. However, ischemia/reperfusion injury (IRI) during transplantation is a leading cause of primary graft dysfunction (PGD). Ferroptosis, a form of iron-dependent cell death driven by lipid peroxidation, has been implicated in IRI across various organs.
View Article and Find Full Text PDFSpontaneous coronary artery dissection (SCAD) is characterized by intramural hematoma in a coronary artery leading to partial or complete vessel obstruction. A 51-year-old female was hospitalized with acute myocardial infarction and cardiogenic shock. She was diagnosed with severe SCAD, affecting the proximal left coronary artery.
View Article and Find Full Text PDFJ Mol Cell Cardiol Plus
March 2025
Center for Clinical Investigation (CIC1436)/CARDIOMET, Rangueil University Hospital, Toulouse, France.
Background: The identification of new biomarkers that improve existing cardiovascular risk prediction models for acute coronary syndrome is essential for accurately identifying high-risk patients and refining treatment strategies. Autophagy, a vital cellular degradation mechanism, is important for maintaining cardiac health. Dysregulation of autophagy has been described in cardiovascular conditions such as myocardial ischemia-reperfusion injury, a key factor in myocardial infarction (MI).
View Article and Find Full Text PDFSmall
January 2025
Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China.
Although classical fluorescent dyes feature advantages of high quantum yield, tunable "OFF-ON" fluorescence, and modifiable chemical structures, etc., their bio-applications in deep tissue remains challenging due to their excessively short emission wavelength (that may lead to superficial tissue penetration depth). Therefore, there is a pressing need for pushing the wavelength of classical dyes from visible region to NIR-II window.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!