Unlabelled: Methylmercury is an environmental pollutant that can induce serious central nervous system damage. Its ubiquitous presence in the environment in trace amounts has raised concerns about potential adverse effects on human health. Although many studies have evaluated the effects of methylmercury on neural development in fetal and neonatal mice, there has been less focus on studies using adolescent mice. Therefore, in this study, the effects of methylmercury on brain neurodevelopment and maturation were evaluated by various neurobehavioral trials using adolescent mice exposed to 30 ppm methylmercuric chloride (approximately 24 ppm methylmercury) for up to 8 weeks. Under these administration conditions, weight gain in adolescent mice was unaffected by methylmercury exposure. Furthermore, methylmercury exposure in adolescent mice had no effect on sociability as assessed by the social interaction test, impulsivity as assessed by the cliff avoidance reaction test, depressive behavior as assessed by the tail-suspension test, or locomotor activity as assessed using the Supermex system. In contrast, short-term memory assessed by the Y-maze test, as well as long-term memory assessed by novel object recognition and passive avoidance tests, revealed impairments induced by methylmercury exposure in adolescent mice. These results suggest that long-term exposure to methylmercury during adolescence potentially impairs memory function, and the nervous pathway of brain areas involved in learning and memory are particularly vulnerable to the adverse effects of methylmercury.
Supplementary Information: The online version contains supplementary material available at 10.1007/s43188-024-00239-y.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11187021 | PMC |
http://dx.doi.org/10.1007/s43188-024-00239-y | DOI Listing |
Neuroscience
January 2025
Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China. Electronic address:
Background: The mechanisms underlying esketamine's therapeutic effects remain elusive. The study aimed to explore the impact of single esketamine treatment on LPS-induced adolescent depressive-like behaviors and the role of Nrf2 regulated neuroinflammatory response in esketamine-produced rapid antidepressant efficacy.
Methods: Adolescent male C57BL/6J mice were randomly assigned to three groups: control, LPS, and LPS + esketamine (15 mg/kg, i.
J Neurosci
January 2025
Arizona State University, Department of Psychology, Tempe, AZ, 85287 USA.
The cerebellum, identified to be active during cognitive and social behavior, has multisynaptic connections through the cerebellar nuclei (CN) and thalamus to cortical regions, yet formation and modulation of these pathways are not fully understood. Perineuronal nets (PNNs) respond to changes in local cellular activity and emerge during development. PNNs are implicated in learning and neurodevelopmental disorders, but their role in the CN during development is unknown.
View Article and Find Full Text PDFSynapse
January 2025
Center for Neural Science, New York University, New York, New York, USA.
Objective: Anorexia nervosa (AN) is an eating disorder with the second highest mortality of all mental illnesses and high relapse rate, especially among adult females, yet with no accepted pharmacotherapy. A small number of studies have reported that adult females who struggled with severe and relapsing AN experienced sustained remission of the illness following ketamine infusions. Two other reports showed that 30 mg/kg IP ketamine can reduce vulnerability of adolescent mice to activity-based anorexia (ABA), an animal model of AN.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Albany Medical College, Albany, NY, USA.
Background: Stress is a common modifiable risk factor for AD, which increases dementia risk 2-fold. During the stress response, the hypothalamic-pituitary adrenal (HPA) axis is activated which stimulates the release of stress hormones called glucocorticoids into the blood stream. Studies on early-life stress have shown a glucocorticoid dependent vulnerability towards late-life inflammation.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
UNC Chapel Hill, Chapel Hill, NC, USA.
Background: In the last decade, we have demonstrated that the brain-enriched E3 ubiquitin ligase TRIM9 regulates cytoskeletal dynamics, membrane remodeling, and netrin-dependent signaling pathways in all stages of neuron development, including the maturation of dendritic spines and electrophysiological activity. Moreover, TRIM9 protein levels increase in the adult brain and are maintained throughout adulthood. In the adult mouse TRIM9 is enriched within the postsynaptic density (PSD), a proteinaceous rich region in the post synapse, containing neurotransmitter receptors, scaffolding proteins, and cytoskeletal elements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!