Introduction: Arrhythmia is an important indication of underlying cardiovascular diseases (CVD) and is prevalent worldwide. Accurate diagnosis of arrhythmia is crucial for timely and effective treatment. Electrocardiogram (ECG) plays a key role in the diagnosis of arrhythmia. With the continuous development of deep learning and machine learning processes in the clinical field, ECG processing algorithms have significantly advanced the field with timely and accurate diagnosis of arrhythmia.
Methods: In this study, we combined the wavelet time-frequency maps with the novel Swin Transformer deep learning model for the automatic detection of cardiac arrhythmias. In specific practice, we used the MIT-BIH arrhythmia dataset, and to improve the signal quality, we removed the high-frequency noise, artifacts, electromyographic noise and respiratory motion effects in the ECG signals by the wavelet thresholding method; we used the complex Morlet wavelet for the feature extraction, and plotted wavelet time-frequency maps to visualise the time-frequency information of the ECG; we introduced the Swin Transformer model for classification and achieve high classification accuracy of ECG signals through hierarchical construction and self attention mechanism, and combines windowed multi-head self-attention (W-MSA) and shifted window-based multi-head self-attention (SW-MSA) to comprehensively utilise the local and global information.
Results: To enhance the confidence of the experimental results, we evaluated the performance using intra-patient and inter-patient paradigm analyses, and the model classification accuracies reached 99.34% and 98.37%, respectively, which are better than the currently available detection methods.
Discussion: The results reveal that our proposed method is superior to currently available methods for detecting arrhythmia ECG. This provides a new idea for ECG based arrhythmia diagnosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11193364 | PMC |
http://dx.doi.org/10.3389/fcvm.2024.1401143 | DOI Listing |
Sensors (Basel)
January 2025
School of Information Engineering, China University of Geosciences, Beijing 100083, China.
Extracting fragmented cropland is essential for effective cropland management and sustainable agricultural development. However, extracting fragmented cropland presents significant challenges due to its irregular and blurred boundaries, as well as the diversity in crop types and distribution. Deep learning methods are widely used for land cover classification.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China.
Megavoltage computed tomography (MVCT) plays a crucial role in patient positioning and dose reconstruction during tomotherapy. However, due to the limited scan field of view (sFOV), the entire cross-section of certain patients may not be fully covered, resulting in projection data truncation. Truncation artifacts in MVCT can compromise registration accuracy with the planned kilovoltage computed tomography (KVCT) and hinder subsequent MVCT-based adaptive planning.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
School of Computing, Engineering and Built Environment, Glasgow Caledonian University, Glasgow G4 0BA, UK.
The chicken is the world's most farmed animal. In this work, we introduce the Chicks4FreeID dataset, the first publicly available dataset focused on the reidentification of individual chickens. We begin by providing a comprehensive overview of the existing animal reidentification datasets.
View Article and Find Full Text PDFFront Neurorobot
December 2024
Department of Fine Arts, Bozhou University, Bozhou, Anhui, China.
Introduction: Segmentation tasks in computer vision play a crucial role in various applications, ranging from object detection to medical imaging and cultural heritage preservation. Traditional approaches, including convolutional neural networks (CNNs) and standard transformer-based models, have achieved significant success; however, they often face challenges in capturing fine-grained details and maintaining efficiency across diverse datasets. These methods struggle with balancing precision and computational efficiency, especially when dealing with complex patterns and high-resolution images.
View Article and Find Full Text PDFChin Med
January 2025
School of Pharmacy, Hangzhou Normal University, Hangzhou, China.
Background: The individualized prediction and discrimination of precancerous lesions of gastric cancer (PLGC) is critical for the early prevention of gastric cancer (GC). However, accurate non-invasive methods for distinguishing between PLGC and GC are currently lacking. This study therefore aimed to develop a risk prediction model by machine learning and deep learning techniques to aid the early diagnosis of GC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!