Introduction: In 85% of patients with chronic low back pain (CLBP), no specific pathoanatomical cause can be identified. Besides primary peripheral drivers within the lower back, spinal or supraspinal sensitization processes might contribute to the patients' pain.

Objectives: The present study conceptualized the most painful area (MP) of patients with nonspecific CLBP as primarily affected area and assessed signs of peripheral, spinal, and supraspinal sensitization using quantitative sensory testing (QST) in MP, a pain-free area adjacent to MP (AD), and a remote, pain-free control area (CON).

Methods: Fifty-nine patients with CLBP (51 years, SD = 16.6, 22 female patients) and 35 pain-free control participants individually matched for age, sex, and testing areas (49 years, SD = 17.5, 19 female participants) underwent a full QST protocol in MP and a reduced QST protocol assessing sensory gain in AD and CON. Quantitative sensory testing measures, except paradoxical heat sensations and dynamic mechanical allodynia (DMA), were -transformed to the matched control participants and tested for significance using -tests (α = 0.001). Paradoxical heat sensations and DMA occurrence were compared between cohorts using Fisher's exact tests (α = 0.05). The same analyses were performed with a high-pain and a low-pain CLBP subsample (50% quantile).

Results: Patients showed cold and vibration hypoesthesia in MP (all s < 0.001) and mechanical hyperalgesia ( < 0.001) and more frequent DMA ( = 0.044) in AD. The results were mainly driven by the high-pain CLBP subsample. In CON, no sensory alterations were observed.

Conclusion: Mechanical hyperalgesia and DMA adjacent to but not within MP, the supposedly primarily affected area, might reflect secondary hyperalgesia originating from spinal sensitization in patients with CLBP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11191021PMC
http://dx.doi.org/10.1097/PR9.0000000000001166DOI Listing

Publication Analysis

Top Keywords

mechanical hyperalgesia
12
spinal sensitization
8
chronic low
8
low pain
8
spinal supraspinal
8
supraspinal sensitization
8
quantitative sensory
8
sensory testing
8
pain-free control
8
patients clbp
8

Similar Publications

NRG1-ErbB4 signaling in the cerebrospinal fluid-contacting nucleus regulates thermal pain in mice.

Neuroscience

December 2024

Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China. Electronic address:

The cerebrospinal fluid-contacting nucleus(CSF-contacting nucleus) is a pair of unique nuclei in the brain parenchyma which has long been demonstrated to play an important role in pain signal processing. However, the role of the CSF-contacting nucleus in postoperative pain is still unclear. Here, our works showed that c-Fos expression in the CSF-contacting nucleus was increased in response to incisional pain.

View Article and Find Full Text PDF

Objective: Among patients with acute stroke, we aimed to identify those who will later develop central post-stroke pain (CPSP) versus those who will not (non-pain sensory stroke [NPSS]) by assessing potential differences in somatosensory profile patterns and evaluating their potential as predictors of CPSP.

Methods: In a prospective longitudinal study on 75 acute stroke patients with somatosensory symptoms, we performed quantitative somatosensory testing (QST) in the acute/subacute phase (within 10 days) and on follow-up visits for 12 months. Based on previous QST studies, we hypothesized that QST values of cold detection threshold (CDT) and dynamic mechanical allodynia (DMA) would differ between CPSP and NPSS patients before the onset of pain.

View Article and Find Full Text PDF

Enriched environment prevents hypernociception and depression-like behavior in a psychiatric disorder and neuropathic pain comorbidity experimental condition.

Physiol Behav

December 2024

Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes 3900, Ribeirão Preto, São Paulo,14049-900, Brazil; Behavioural Neurosciences Institute (INeC), Av. Bandeirantes 3900, Ribeirão Preto, 14040-900, São Paulo, Brazil. Electronic address:

Pain is a multifactorial debilitating condition associated with some psychiatric comorbidities such as generalized anxiety and depression. Concerning pharmacological treatment, which is often inefficient or associated with intense side effects, the physical and social context may be fundamental for patient's health improvement. In this sense, we sought to assess the impact of an enriched environment (EE) on neuropathic pain (NP) and depression comorbid.

View Article and Find Full Text PDF

Background And Purpose: Irritable bowel syndrome (IBS) is a common condition that is challenging to treat, and novel drugs are needed for this condition. Previously, a chronic vicarious social defeat stress (cVSDS) mouse model exhibits IBS-like symptoms. Also agonists of the opioid δ-receptor exert anti-stress effects in rodents with minimal adverse effects.

View Article and Find Full Text PDF

Tachykinin signaling in the right parabrachial nucleus mediates early-phase neuropathic pain development.

Neuron

December 2024

Department of Anesthesiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China. Electronic address:

The lateral parabrachial nucleus (PBN) is critically involved in neuropathic pain modulation. However, the cellular and molecular mechanisms underlying this process remain largely unknown. Here, we report that in mice, the right-sided, but not the left-sided, PBN plays an essential role in the development of hyperalgesia following nerve injury, irrespective of the injury side.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!