Limited English proficiency poses a significant barrier to health care, particularly in US border states, exacerbated by a nationwide shortage of interpreters. This growing disparity in language-concordant care underscores the need for solutions like integrating Medical Spanish Certification (MSC) into medical school curricula, a topic of considerable debate. Various arguments exist for and against including MSC in medical education, especially considering the increasing Hispanic/Latino patient population. This paper aims to present a balanced perspective on officially including MSC in medical school curricula. After discussing the various arguments, the authors suggest a balanced approach that addresses the challenges while leveraging the potential benefits of MSC in medical education.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188791 | PMC |
http://dx.doi.org/10.1080/08998280.2024.2334633 | DOI Listing |
J Ophthalmol
January 2025
Departments of Genetics, Microbiology and Immunology, Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences University of Kragujevac, 69 Svetozara Markovica Street, Kragujevac 34000, Serbia.
Severe dry eye disease (DED) is an inflammatory condition characterized by a lack of sufficient moisture or lubrication on the surface of the eye, significantly impacting the quality of life and visual function. Since detrimental immune response is crucially responsible for the development and aggravation of DED, therapeutic agents which modulate phenotype and function of eye-infiltrated inflammatory immune cells could be used for the treatment of severe DED. Due to their potent immunomodulatory properties, mesenchymal stem cells (MSCs) represent potentially new remedies for the treatment of inflammatory eye diseases.
View Article and Find Full Text PDFClin Mol Hepatol
January 2025
Department of Biomedical Science, CHA University, Seongnam, 13488, Republic of Korea.
Background/aims: Epithelial-to-mesenchymal transition (EMT) plays a crucial role in hepatic fibrogenesis and liver repair in chronic liver disease. Our research highlights the antifibrotic potential of placenta-derived mesenchymal stem cells (PD-MSCs) and the role of phosphatase of regenerating liver-1 (PRL-1) in promoting liver regeneration.
Methods: We evaluated the efficacy of PD-MSCs overexpressing PRL-1 (PD-MSCsPRL-1) in a bile duct ligation (BDL)-induced rat injury model, focusing on their ability to regulate EMT.
Med Oncol
January 2025
Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
The heterogeneity and evolution of tumors remain significant obstacles in cancer treatment, contributing to both therapy resistance and relapse. Mesenchymal stem/stromal cells (MSCs) are multipotent stromal cells within the tumor microenvironment that interact with tumor cells through various mechanisms, including cell fusion. While previous research has largely focused on the effects of MSC-tumor cell fusion on tumor proliferation, migration, and tumorigenicity, emerging evidence indicates that its role in tumor maintenance, evolution, and recurrence, particularly under stress conditions, may be even more pivotal.
View Article and Find Full Text PDFSignal Transduct Target Ther
January 2025
Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China.
Dry eye disease (DED) is a prevalent inflammatory condition significantly impacting quality of life, yet lacks effective pharmacological therapies. Herein, we proposed a novel approach to modulate the inflammation through metabolic remodeling, thus promoting dry eye recovery. Our study demonstrated that co-treatment with mesenchymal stem cells (MSCs) and thymosin beta-4 (Tβ4) yielded the best therapeutic outcome against dry eye, surpassing monotherapy outcomes.
View Article and Find Full Text PDFBrain Res Bull
January 2025
Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China; Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China; National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China. Electronic address:
Background: Ischemic stroke (IS) remains a significant global health burden, necessitating the development of novel therapeutic strategies. This study aims to systematically evaluate the therapeutic effects of mesenchymal stem cell-derived exosomes (MSC-Exos) on IS outcomes in rodent models.
Methods: A comprehensive literature search was conducted across multiple databases to identify studies investigating the effects of MSC-Exos on rodent models of IS.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!