Background The pathogen , which causes scrub typhus, is rapidly spreading throughout the tropics. As a measure to improve public health, the development of a vaccine for human use is essential. Scrub typhus is listed as one of the underdiagnosed and underreported febrile infections. This vector-borne zoonotic infection appears as eschar on the patient's skin. Methods Immunoinformatics was employed to predict the multi-epitope subunit vaccine that will activate both B and T cells. The final vaccine includes lipoprotein LprA as an adjuvant at the N-terminus along with B-cell, helper T lymphocyte (HTL), and cytotoxic T lymphocyte (CTL)-binding epitopes to boost immunogenicity. Assessing the vaccine's physiochemistry demonstrates that it is both antigenic and non-allergic. The vaccine structure was developed, enhanced, confirmed, and disulfide-engineered to provide the best possible model. Using molecular docking, the interaction of the produced vaccine with toll-like receptor 2 (TLR2) was analyzed, and the vaccine-receptor complex was stabilized by molecular dynamics (MD) simulation. According to in silico cloning, can efficiently produce the recommended vaccine. Additionally, the efficacy of the in silico-developed vaccine must be evaluated in an in vitro and in vivo experiment. Results The developed vaccine successfully stimulates cellular and humoral immune responses. The vaccine, which has three B-cell epitopes, three HCL epitopes, and nine CTL epitopes, can bind firmly to immunological receptors. Dynamic investigations of the vaccine-receptor complex show a strong interaction and stable conformation. Conclusion In this study, the vaccine candidate demonstrated strong antigenicity, stability, and solubility while also being non-allergenic to host cells. The vaccine candidate's stability with the TLR2 immune receptor is established by binding studies, and in silico cloning verifies efficient and stable expression in the bacterial system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11194024PMC
http://dx.doi.org/10.7759/cureus.61009DOI Listing

Publication Analysis

Top Keywords

vaccine
12
scrub typhus
12
multi-epitope subunit
8
subunit vaccine
8
vaccine-receptor complex
8
silico cloning
8
vaccine identification
4
identification development
4
development scrub
4
typhus orientia
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!