Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Dental materials with dentine regenerative properties are preferred over conventional materials. Calcium silicate cements, such as Biodentine, are bioactive and offer excellent sealing ability, making them ideal for various dental treatments.
Objectives: This study aimed to fabricate bioactive calcium silicates infused with titanium (Ti) and strontium (Sr) to optimize their neo-angiogenic, antimicrobial, and regenerative properties while maintaining mechanical stability.
Methodology: Ti- and Sr-infused calcium silicate cements were synthesized, and their mineral phases were characterized using X-ray diffraction. Morphological and elemental analyses were performed using field emission scanning electron microscopy (FESEM) and energy dispersive X-ray spectroscopy (EDS). Raman spectroscopy was used to confirm the formation of bioactive material. A hemocompatibility assessment was conducted to evaluate blood compatibility.
Results: The presence of Ca, SiO, and SrTiO mineral phases indicated the successful infusion of Ti and Sr into the calcium silicate cement. FESEM and EDS revealed interconnected small spheres and rods in the silicate network with the relevant elemental compositions. Raman spectra verified that Si-O-Si and Ti-O-Ti vibrations exist, validating the formation of a bioactive material. The hemocompatibility assessment demonstrated optimal blood compatibility.
Conclusions: This study successfully fabricated an improved calcium silicate-based material with enhanced regenerative properties and excellent biocompatibility. This newly formed substrate holds promise for providing superior restorative solutions and aiding in conservative treatment modalities during dental procedures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11192212 | PMC |
http://dx.doi.org/10.7759/cureus.60863 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!