Background: In recent years, the incidence and prevalence of Nephrotic Syndrome (NS) have been increasing. Zhuling Decoction (ZLD), a classical Chinese medicine, has been clinically proven to be effective for the treatment of NS. However, its underlying mechanism and pharmacodynamic substances remain unclear.
Objective: This study aimed to explore the mechanism of action and chemical components of ZLD against NS using network pharmacology and molecular docking.
Methods: Traditional Chinese Medicine Systems Pharmacology (TCMSP), Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicines (BATMAN-TCM), and SwissTargetPrediction databases were used to screen the principal ingredients and the associated targets of ZLD. NS-related targets were obtained from the Online Mendelian Inheritance in Man (OMIM), GeneCards, Therapeutic Target Database (TTD), and Drugbank databases. Shared targets were derived by the intersection of ZLD- and NS-associated targets. Protein-interaction relationships were analyzed using the STRING database and Cytoscape. A visualized drug-active compound-target network of ZLD was established using Cytoscape. Analyses of gene enrichment were performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) methods by the Database for Annotation, Visualization, and Integrated Discovery (DAVID) database. Molecular docking was performed to assess the binding activity between active components and hub targets.
Results: Polyporusterone E, cerevisterol, alisol B, and alisol B 23-acetate were the primary potential ingredients of ZLD. HMGCR, HSD11B1, NOS2, NR3C1, and NR3C2 were the hub targets of ZLD against NS. Molecular docking showed that polyporusterone E, cerevisterol, and alisol B had high binding activities with targets HMGCR, HSD11B1, and NOS2.
Conclusion: In summary, this study suggests that the main active compounds (polyporusterone E, cerevisterol, alisol B) may have important roles for ZLD acting against NS by binding to hub targets (HMGCR, HSD11B1, and NOS2) and modulating PI3K-Akt, Ras, MAPK, and HIF-1 signaling pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/0113816128305808240529115047 | DOI Listing |
Chem Biodivers
January 2025
Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, India.
Catheter-associated urinary tract infections (CAUTIs), often caused by biofilm-forming Staphylococcus aureus, present significant clinical challenges. Skt35, a dioxopiperidinamide derivative of cinnamic acid, was investigated for its potential antibacterial and antibiofilm activities against S. aureus biofilms.
View Article and Find Full Text PDFMol Divers
January 2025
Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Mohali, Punjab, 160062, India.
CD47, a cell surface protein, serves as a "don't eat me" signal that prevents immune cells from engulfing healthy cells upon its interaction with SIRPα. Cancer cells exploit this mechanism by overexpressing CD47 to evade immune destruction. Blocking the interaction between CD47 and its receptor, SIRPα, is a promising therapeutic strategy.
View Article and Find Full Text PDFMol Divers
January 2025
School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou, 310023, People's Republic of China.
The quinazoline scaffold serves as a fundamental framework, demonstrating potent anti-tumor activity. Employing the pharmacophore-based scaffold hopping principle, we successfully synthesized a series of FAK/PLK1 inhibitors incorporating the quinazoline scaffold. The synthesized compounds were characterized using H NMR, C NMR, and HRMS techniques.
View Article and Find Full Text PDFMol Divers
January 2025
Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China.
Succinate dehydrogenase (SDH) has been identified as one of the ideal targets for the development of novel nematicides. However, the resistance of nematodes to fluopyram, one of the commercialized SDH inhibitors, is becoming a growing concern. Since expanding the structural diversity around an active scaffold is a useful strategy for drug development, herein a series of fluopyram analogues with a broad, biologically relevant indole moiety were synthesized and evaluated for nematicidal activity against C.
View Article and Find Full Text PDFPlant Foods Hum Nutr
January 2025
Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
Sea buckthorn is a model of medicine and food homology, but the chemical composition and mechanism of anti-inflammatory effects are limited. In this study, the key components and mechanisms of the anti-inflammatory effects of sea buckthorn were identified based on UPLC-Q-TOF-MS, network pharmacology, molecular docking, molecular dynamics and RAW264.7 cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!