Induced seismicity poses a challenge to the development of Enhanced Geothermal Systems (EGS). Improving monitoring and forecasting techniques is essential to mitigate induced seismicity and thereby fostering a positive perception of EGS projects among local authorities and population. Induced seismicity is the result of complex and coupled thermo-hydro-mechanical-chemical mechanisms. Injection flux and pressure are crucial controlling parameters for both hydraulic stimulation and circulation protocols. We develop a methodology combining a hydro-mechanical model with a seismicity rate model to estimate the magnitude and frequency of mainshocks and aftershocks induced by fluid injection. We apply the methodology to the case of the Basel EGS (2006, Switzerland) to compare the effects of progressive, cyclic and constant injections on the mechanical response of discrete faults. Results from the coupled hydro-mechanical models show that the pore pressure diffusion and consequent enhancement of fault permeability are limited to the vicinity of the injection well during cyclic injection. Additionally, constant injection induces seismicity from the start of the injection but enhances the permeability of most of the faults within a shorter duration, inducing less post-injection seismicity. The methodology can be adapted to any numerical model and allows new projects to be developed by anticipating the safest injection protocol.This article is part of the theme issue 'Induced seismicity in coupled subsurface systems'.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363683PMC
http://dx.doi.org/10.1098/rsta.2023.0179DOI Listing

Publication Analysis

Top Keywords

induced seismicity
16
seismicity
8
injection
8
induced
5
forecasting fluid-injection
4
fluid-injection induced
4
seismicity choose
4
choose best
4
best injection
4
injection strategy
4

Similar Publications

The position of landslides on a slope plays a crucial role in determining landslide susceptibility and the likelihood of landslide debris interacting with the fluvial system. Most studies primarily focus on shallow landslides in the bedrock weathering zone or large-scale bedrock landslides, but the relevant work about the location and connectivity to channels of loess landslides is limited despite their potential to provide insights into slope stability and material transport in loess regions. In this study, we explored differences in landslide location and connectivity to channels between 2013 Mw5.

View Article and Find Full Text PDF

Accurate characterisation of seismic source mechanisms in mining environments is crucial for effective hazard mitigation, but it is complicated by the presence of anisotropic geological conditions. Neglecting anisotropic effects during moment tensor (MT) inversion introduces significant distortions in the retrieved source characteristics. In this study, we investigated the impact of ignoring anisotropy during MT inversion on the reliability of hazard assessment.

View Article and Find Full Text PDF

Claims of industrially induced seismicity vary from indisputable to unpersuasive and yet the veracity of industrial induction is vital for regulatory and operational practice. Assessment schemes have been developed in response to this need. We report here an initial assessment of the reliability of all globally known cases of proposed human-induced earthquakes and invite specialists on particular cases to refine these results.

View Article and Find Full Text PDF

In Song dynasty, Dou-Gong construction techniques, Tou-Xin-Zao and Ji-Xin-Zao, varied by the number of Fang connecting to the exterior. This study examines the impact of Fang connections on the mechanical characteristics of Dou-Gong. Six full-scale models were constructed and subjected to quasi-static loading tests in the horizontal Beam and Fang directions under vertical load.

View Article and Find Full Text PDF

Background: The wild stocks of Pinctada maxima pearl oysters found off the coast of northern Australia are of critical importance for the sustainability of Australia's pearling industry. Locations inhabited by pearl oysters often have oil and gas reserves in the seafloor below and are therefore potentially subjected to seismic exploration surveys. The present study assessed the impact of a simulated commercial seismic survey on the transcriptome of pearl oysters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!