A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Thermodynamics of spin-1/2 fermions on coarse temporal lattices using automated algebra. | LitMetric

Thermodynamics of spin-1/2 fermions on coarse temporal lattices using automated algebra.

Philos Trans A Math Phys Eng Sci

Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599, USA.

Published: July 2024

Recent advances in automated algebra for dilute Fermi gases in the virial expansion, where coarse temporal lattices were found advantageous, motivate the study of more general computational schemes that could be applied to arbitrary densities, beyond the dilute limit where the virial expansion is physically reasonable. We propose here such an approach by developing what we call the Quantum Thermodynamics Computational Engine (QTCE). In QTCE, the imaginary-time direction is discretized and the interaction is accounted for via a quantum cumulant expansion, where the coefficients are expressed in terms of non-interacting expectation values. The aim of QTCE is to enable the systematic resolution of interaction effects at fixed temporal discretization, as in lattice Monte Carlo calculations, but here in an algebraic rather than numerical fashion. Using this approach, in combination with numerical integration techniques (both known and alternative ones proposed here), we explore the thermodynamics of spin-1/2 fermions across spatial dimensions, focusing on the unitary limit. We find that, remarkably, extremely coarse temporal lattices, when suitably renormalized using known results from the virial expansion, yield stable partial sums for QTCE's cumulant expansion that are qualitatively and quantitatively correct in wide regions (when compared with known experimental results). This article is part of the theme issue 'The liminal position of Nuclear Physics: from hadrons to neutron stars'.

Download full-text PDF

Source
http://dx.doi.org/10.1098/rsta.2023.0113DOI Listing

Publication Analysis

Top Keywords

coarse temporal
12
temporal lattices
12
virial expansion
12
thermodynamics spin-1/2
8
spin-1/2 fermions
8
automated algebra
8
cumulant expansion
8
expansion
5
fermions coarse
4
temporal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!