Second-order optimization strategies for neural network quantum states.

Philos Trans A Math Phys Eng Sci

Department of Physics, University of Surrey, Guildford, GU2 7XH, UK.

Published: July 2024

The Variational Monte Carlo (VMC) method has recently seen important advances through the use of neural network quantum states. While more and more sophisticated ansatze have been designed to tackle a wide variety of quantum many-body problems, modest progress has been made on the associated optimization algorithms. In this work, we revisit the Kronecker-Factored Approximate Curvature (KFAC), an optimizer that has been used extensively in a variety of simulations. We suggest improvements in the scaling and the direction of this optimizer and find that they substantially increase its performance at a negligible additional cost. We also reformulate the VMC approach in a game theory framework, to propose a novel optimizer based on decision geometry. We find that on a practical test case for continuous systems, this new optimizer consistently outperforms any of the KFAC improvements in terms of stability, accuracy and speed of convergence. Beyond VMC, the versatility of this approach suggests that decision geometry could provide a solid foundation for accelerating a broad class of machine learning algorithms. This article is part of the theme issue 'The liminal position of Nuclear Physics: from hadrons to neutron stars'.

Download full-text PDF

Source
http://dx.doi.org/10.1098/rsta.2024.0057DOI Listing

Publication Analysis

Top Keywords

neural network
8
network quantum
8
quantum states
8
decision geometry
8
second-order optimization
4
optimization strategies
4
strategies neural
4
states variational
4
variational monte
4
monte carlo
4

Similar Publications

Objective: Creating an intracortical brain-computer interface (iBCI) capable of seamless transitions between tasks and contexts would greatly enhance user experience. However, the nonlinearity in neural activity presents challenges to computing a global iBCI decoder. We aimed to develop a method that differs from a globally optimized decoder to address this issue.

View Article and Find Full Text PDF

Emotion processing is an integral part of everyone's life. The basic neural circuits involved in emotion perception are becoming clear, though the emotion's cognitive processing remains under investigation. Utilizing the stereo-electroencephalograph with high temporal-spatial resolution, this study aims to decipher the neural pathway responsible for discriminating low-arousal and high-arousal emotions.

View Article and Find Full Text PDF

Adaptation optimizes sensory encoding for future stimuli.

PLoS Comput Biol

January 2025

Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.

Sensory neurons continually adapt their response characteristics according to recent stimulus history. However, it is unclear how such a reactive process can benefit the organism. Here, we test the hypothesis that adaptation actually acts proactively in the sense that it optimally adjusts sensory encoding for future stimuli.

View Article and Find Full Text PDF

With the popularity of circular economy around the world, transactions in the second-hand sailboat market are extremely active. Determining pricing strategies and exploring their regional effects is a blank area of existing research and has important practical and statistical significance. Therefore, this article uses the random forest model and XGBoost algorithm to identify core price indicators, and uses an innovative rolling NAR dynamic neural network model to simulate and predict second-hand sailboat price data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!