As one of the common traumatic diseases in clinical practice, peripheral nerve injury (PIN) often causes nerve pain, abnormal reflexes, autonomic disorders, and even sensorimotor disorders due to the slow regeneration rate after injury, which seriously affects body function. Even as the gold standard of treatment, autologous nerve transplantation has limitations such as limited donor area and donor injury, which greatly limits its clinical application effect. Therefore, the preparation of artificial nerve grafts suitable for clinical practice has become the future development trend of peripheral nerve injury treatment, and the repair of injury defects and the promotion of nerve regeneration have also become research hotspots in tissue engineering and regenerative medicine. In recent years, extensive research has been carried out on nerve guidance conduits (NGCs) in the field of nerve regeneration and repair, in which scaffold materials and internal fillers have also become the focus of research as the core elements of neural catheters, and a series of achievements have been made in the application of new materials, embedding stem cells/precursor cells, and developing trophic factors and drug-loaded sustained-release systems. Therefore, this paper focuses on the application progress of hydrogel and its related derivative materials in the field of peripheral nerve injury repair, and provides new ideas for promoting the related research of tissue engineering and clinical medicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.12200/j.issn.1003-0034.20230883 | DOI Listing |
Cureus
December 2024
Clinical Neurophysiology, University Hospital of Wales, Cardiff, GBR.
Charcot-Marie-Tooth disease (CMT) is the most common hereditary peripheral neuropathy. It presents a wide range of genetic and phenotypic heterogeneity. CMT disease type 1A (CMT1A), caused by PMP22 gene duplication, represents the most common subtype of CMT in Western countries.
View Article and Find Full Text PDFIntroduction: Dynamic modulation of grip occurs mainly within the major structures of the brain stem, in parallel with cortical control. This basic, but fundamental level of the brain, is robust to ill-formed feedback and to be useful, it may not require all the perceptual information of feedback we are consciously aware. This makes it viable candidate for using peripheral nerve stimulation (PNS), a form of tactile feedback that conveys intensity and location information of touch well but does not currently reproduce other qualities of natural touch.
View Article and Find Full Text PDFCell Regen
December 2024
Department of Neurology, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, 272029, Shandong Province, China.
Peripheral nerve injury (PNI) usually causes severe motor, sensory and autonomic dysfunction. In addition to direct surgical repair, rehabilitation exercises, and traditional physical stimuli, for example, electrical stimulation, have been applied in promoting the clinical recovery of PNI for a long time but showed low efficiency. Recently, significant progress has been made in new physical modulation to promote peripheral nerve regeneration.
View Article and Find Full Text PDFCereb Cortex
December 2024
Baker Department of Cardiometabolic Health, The University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia.
Transcranial magnetic stimulation (TMS) is applied both in research settings and clinically, notably in treating depression through the dorsolateral prefrontal cortex (dlPFC). We have recently shown that transcranial alternating current stimulation of the dlPFC partially entrains muscle sympathetic nerve activity (MSNA) to the stimulus. We, therefore, aimed to further explore the sympathetic properties of the dlPFC, hypothesizing that single-pulse TMS could generate de novo MSNA bursts.
View Article and Find Full Text PDFEur J Radiol
December 2024
Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China. Electronic address:
Objects: To investigate the specific manifestations of neurogenic and non-neurogenic tumors involving peripheral nerves on contrast-enhanced magnetic resonance neurography (CE-MRN) and explore the potential of CE-MRN in aiding differential diagnosis.
Materials And Methods: Twenty-nine patients with neurogenic tumors and 23 with non-neurogenic tumors involving peripheral nerves were enrolled in this study. Both routine MRI and CE-MRN scanning were performed on all subjects.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!