Extracellular vesicles (EVs) are considered a vital component of cell-to-cell communication and represent a new frontier in diagnostics and a means to identify pathways for therapeutic intervention. Recently, studies have revealed the importance of tissue-derived EVs (Ti-EVs), which are EVs present in the interstitial spaces between cells, as they better represent the underlying physiology of complex, multicellular tissue microenvironments in biology and disease. EVs are native, lipid bilayer membraned nano-sized particles produced by all cells that are packaged with varied functional biomolecules including proteins, lipids, and nucleic acids. They are implicated in short- and long-range cellular communication and may elicit functional responses in recipient cells. To date, studies have often utilized cultured cells or biological fluids as a source for EVs that do not capture local molecular signatures of the tissue microenvironment. Recent work utilizing Ti-EVs has elucidated novel biomarkers for disease and provided insights into disease mechanisms that may lead to the development of novel therapeutic agents. Still, there are considerable challenges facing current studies. This review explores the vast potential and unique challenges for Ti-EV research and provides considerations for future studies that seek to advance this exciting field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11403234PMC
http://dx.doi.org/10.1016/j.ymthe.2024.06.025DOI Listing

Publication Analysis

Top Keywords

extracellular vesicles
8
evs
5
prospects challenges
4
challenges tissue-derived
4
tissue-derived extracellular
4
vesicles extracellular
4
vesicles evs
4
evs considered
4
considered vital
4
vital component
4

Similar Publications

PMA1-containing extracellular vesicles of triggers immune responses and colitis progression.

Gut Microbes

December 2025

Department of Oncology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.

() exhibits aberrant changes in patients with colitis, and it has been reported to dominate the colonic mucosal immune response. Here, we found that PMA1 expression was significantly increased in from patients with IBD compared to that in healthy controls. A Crispr-Cas9-based fungal strain editing system was then used to knock out PMA1 expression in .

View Article and Find Full Text PDF

Exosomes are nanoscale extracellular vesicles with various biological activities that can accelerate wound healing by regulating inflammatory responses, promoting cell proliferation and angiogenesis, and other mechanisms. Among them, plant and animal exosomes have demonstrated unique advantages due to their biological characteristics. Plant exosomes have gradually become a research hotspot due to their wide source, high biosafety, and low production cost, demonstrating significant pro-healing potential.

View Article and Find Full Text PDF

Oral squamous cell carcinoma (OSCC) accounts for approximately 90% of all oral cancers, significantly impacting the survival and quality of life of patients. Exosomes, small extracellular vesicles released by cells, play a crucial role in intercellular communication in cancer. Nevertheless, their function and mechanism in OSCC remain elusive.

View Article and Find Full Text PDF

An extracellular vesicle based hypothesis for the genesis of the polycystic kidney diseases.

Extracell Vesicle

December 2024

The Jared Grantham Kidney Institute at the University of Kansas Medical Center, Department of Nephrology and Hypertension, University of Kansas Medical Center, Kansas City, KS 66160, USA.

Autosomal dominant polycystic kidney (ADPKD) disease is the commonest genetic cause of kidney failure (affecting 1:800 individuals) and is due to heterozygous germline mutations in either of two genes, and . Homozygous germline mutations in are responsible for autosomal recessive polycystic kidney (ARPKD) disease a rare (1:20,000) but severe neonatal disease. The products of these three genes, (polycystin-1 (PC1 4302(3)aa)), (polycystin-2 (PC2 968aa)) and (fibrocystin (4074aa)) are all present on extracellular vesicles (EVs) termed, PKD-exosome-like vesicles (PKD-ELVs).

View Article and Find Full Text PDF

Nanoparticles (approximately 100 nm in diameter) composed of lipid layers containing drugs or biologically active substances are attracting increasing attention in various fields, including medicine, as well as for signal transduction between cells. However, the separation of such nanoparticles conventional HPLC is challenging, often resulting in the clogging and collapse of nanoparticles, as well as a low separation efficiency. Thus far, no HPLC column capable of efficiently separating two types of 100 nm-sized nanoparticles in a short time has been reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!