The study presents a series of examples of magnetic nanoparticle systems designed for the diagnosis of viral diseases. In this interdisciplinary work, we describe one of the most comprehensive synthetic approaches for the preparation and functionalization of smart nanoparticle systems for rapid and effective RT-PCR diagnostics and isolation of viral RNA. Twelve different organic ligands and inorganic porous silica were used for surface functionalization of the FeO magnetic core to increase the number of active centres for efficient RNA binding from human swab samples. Different nanoparticle systems with common beads were characterized by HRTEM, SEM, FT-IR, XRD, XPS and magnetic measurements. We demonstrate the application of the fundamental models modified to fit the experimental zero-field cooling magnetization data. We discuss the influence of the nanoparticle shell parameters (morphology, thickness, ligands) on the overall magnetic performance of the systems. The prepared nanoparticles were tested for the isolation of viral RNA from tissue samples infected with hepatitis E virus-HEV and from biofluid samples of SARS-CoV-2 positive patients. The efficiency of RNA isolation was quantified by RT-qPCR method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11194262PMC
http://dx.doi.org/10.1038/s41598-024-64839-2DOI Listing

Publication Analysis

Top Keywords

nanoparticle systems
12
isolation viral
8
viral rna
8
magnetic
5
surface modification
4
modification silica-coated
4
silica-coated magnetic
4
magnetic nanoparticles
4
nanoparticles application
4
application molecular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!