Saline-alkali land reclamation boosts topsoil carbon storage by preferentially accumulating plant-derived carbon.

Sci Bull (Beijing)

State Key Laboratory of Soil and Sustainable Agriculture, Fengqiu Experimental Station of National Ecosystem Research Network of China, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Published: September 2024

Saline-alkali land is an important cultivated land reserve resource for tackling global climate change and ensuring food security, partly because it can store large amounts of carbon (C). However, it is unclear how saline-alkali land reclamation (converting saline-alkali land into cultivated land) affects soil C storage. We collected 189 adjacent pairs of salt-affected and cultivated soil samples (0-30 cm deep) from the Songnen Plain, eastern coastal area, Hetao Plain, and northwestern arid area in China. Various soil properties, the soil inorganic C (SIC), organic C (SOC), particulate organic C (POC), and mineral-associated organic C (MAOC) densities, and plant- and microbial-derived C accumulation were determined. Saline-alkali land reclamation inconsistently affected the SIC density but significantly (P < 0.001) increased the SOC density. The SOC, POC, and MAOC densities were predicted well by the integrative soil amelioration index. Saline-alkali land reclamation significantly increased plant-derived C accumulation and the plant-derived C to microbial-derived C ratios in all saline-alkali areas, and less microbial transformation of plant-derived C (i.e., less lignin degradation or oxidation) occurred in cultivated soils than salt-affected soils. The results indicated that saline-alkali land reclamation leads to plant-derived C becoming the dominant contributor of SOC storage. POC storage and MAOC storage were strongly linked to plant- and microbial-derived C accumulation, respectively, caused by saline-alkali land reclamation. Our findings suggest that saline-alkali land reclamation increases C storage in topsoil by preferentially promoting plant-derived C accumulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scib.2024.03.063DOI Listing

Publication Analysis

Top Keywords

saline-alkali land
20
land reclamation
12
land cultivated
8
cultivated land
8
land
6
saline-alkali
5
reclamation boosts
4
boosts topsoil
4
topsoil carbon
4
carbon storage
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!