A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Neural Network Classification Algorithm Based on Self-attention Mechanism and Ensemble Learning for MASLD Ultrasound Images. | LitMetric

Background: Ultrasound image examination has become the preferred choice for diagnosing metabolic dysfunction-associated steatotic liver disease (MASLD) due to its non-invasive nature. Computer-aided diagnosis (CAD) technology can assist doctors in avoiding deviations in the detection and classification of MASLD.

Method: We propose a hybrid model that integrates the pre-trained VGG16 network with an attention mechanism and a stacking ensemble learning model, which is capable of multi-scale feature aggregation based on the self-attention mechanism and multi-classification model fusion (Logistic regression, random forest, support vector machine) based on stacking ensemble learning. The proposed hybrid method achieves four classifications of normal, mild, moderate, and severe fatty liver based on ultrasound images.

Result And Conclusion: Our proposed hybrid model reaches an accuracy of 91.34% and exhibits superior robustness against interference, which is better than traditional neural network algorithms. Experimental results show that, compared with the pre-trained VGG16 model, adding the self-attention mechanism improves the accuracy by 3.02%. Using the stacking ensemble learning model as a classifier further increases the accuracy to 91.34%, exceeding any single classifier such as LR (89.86%) and SVM (90.34%) and RF (90.73%). The proposed hybrid method can effectively improve the efficiency and accuracy of MASLD ultrasound image detection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultrasmedbio.2024.05.011DOI Listing

Publication Analysis

Top Keywords

ensemble learning
16
self-attention mechanism
12
stacking ensemble
12
proposed hybrid
12
neural network
8
based self-attention
8
masld ultrasound
8
ultrasound image
8
hybrid model
8
pre-trained vgg16
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!