Genome editing using CRISPR, CAST, and Fanzor systems.

Mol Cells

Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Medical Research Center of Genomic Medicine Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:

Published: July 2024

Genetic engineering technologies are essential not only for basic science but also for generating animal models for therapeutic applications. The clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) system, derived from adapted prokaryotic immune responses, has led to unprecedented advancements in the field of genome editing because of its ability to precisely target and edit genes in a guide RNA-dependent manner. The discovery of various types of CRISPR-Cas systems, such as CRISPR-associated transposons (CASTs), has resulted in the development of novel genome editing tools. Recently, research has expanded to systems associated with obligate mobile element guided activity (OMEGA) RNAs, including ancestral CRISPR-Cas and eukaryotic Fanzor systems, which are expected to complement the conventional CRISPR-Cas systems. In this review, we briefly introduce the features of various CRISPR-Cas systems and their application in diverse animal models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11278801PMC
http://dx.doi.org/10.1016/j.mocell.2024.100086DOI Listing

Publication Analysis

Top Keywords

genome editing
12
crispr-cas systems
12
fanzor systems
8
animal models
8
systems
6
editing crispr
4
crispr cast
4
cast fanzor
4
systems genetic
4
genetic engineering
4

Similar Publications

Taming the wild: domesticating untapped northern fruit tree and shrub resources in the era of high-throughput technologies.

AoB Plants

January 2025

Department of Plant Science, McGill University, Macdonald Campus, 21111 Rue Lakeshore, Ste-Anne-de-Bellevue, H9X 3V9, Québec, Canada.

New crop`s need to emerge to provide sustainable solutions to climate change and increasing abiotic and biotic constraints on agriculture. A large breadth of northern fruit trees and shrubs exhibit a high potential for domestication; however, obstacles to implementing traditional breeding methods have hampered or dissuaded efforts for improvement. This review article proposes a unique roadmap for domestication of northern fruit crops, with a focus on biotechnological (e.

View Article and Find Full Text PDF

Cas12a is a next-generation gene editing tool that enables multiplexed gene targeting. Here, we present a mouse model that constitutively expresses enhanced Acidaminococcus sp. Cas12a (enAsCas12a) linked to an mCherry fluorescent reporter.

View Article and Find Full Text PDF

sgRNA Single-Nucleotide Resolution by Ion-Pairing Reversed-Phase Chromatography.

Anal Chem

January 2025

Synthetic Molecule Design and Development, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States.

Single-stranded guide RNAs (sgRNAs) are important therapeutic modalities that facilitate selective genome editing by the CRISPR/Cas9 system. While these therapeutic modalities are synthesized through solid phase oligonucleotide synthesis similar to small interfering RNA (siRNAs) and antisense oligonucleotide (ASOs) therapeutics, their sequence length and complex secondary and tertiary structure hinder analytical characterization. The resulting current sgRNA methodologies have limited chromatographic selectivity near the FLP and limited MS compatibility.

View Article and Find Full Text PDF

Exosome-mediated CRISPR/Cas delivery: A cutting-edge frontier in cancer gene therapy.

Gene

January 2025

Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, TamilNadu 603203, India. Electronic address:

Cancer is considered the second most common disease globally. In the past few decades, many approaches have been proposed for cancer treatment. One among those is targeted therapy using CRISPR-Cas system which plays an irreplaceable role in translational research through gene editing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!